"一切数学成果可建立在集合论基础上"什么意思?
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/28 21:37:40
Z ]-TmjVKt>r?A!M;j/!k7LlOwbR\aP>KX$ dcgLR{#ϭ+vK6 }a6=(jHBI`3xJ%`l͞6PYĴ s97 cqFZ6Xoxq([MݦW=a(O)YҀ+ >62+x&˚"dT[wkށ玪>~qM0 M Q@%9b! !KUJS/NlbQb{7 ^47@"j @^}g5E֪yPv8Ok)}l~P͠ uJ1!yg} 5pv4pY8NVk4/}LsAyfc,'FI"IJ >,ZW?5v9-xM^`4Gc)S^|}ϿU)Ѱ+A54Ĥ {Y \ -q_T`h\ ʀ^V6Y S~O?Y)`Sjb&TŴ'-@F(P0aD [tXU0z>^BQ,lK:~E}c
"一切数学成果可建立在集合论基础上"什么意思?
"一切数学成果可建立在集合论基础上"什么意思?
"一切数学成果可建立在集合论基础上"什么意思?
1900年前后,在数学的集合论中出现了三个著名悖论,理发师悖论就是罗素悖论的一种通俗表达方式.此外还有康托尔悖论、布拉利—福尔蒂悖论.这些悖论特别是罗素悖论,在当时的数学界与逻辑界内引起了极大震动.触发了数学的第三次危机.
让我们先了解下什么是悖论.悖论(paradox)来自希腊语“para+dokein”,意思是“多想一想”.这个词的意义比较丰富,它包括一切与人的直觉和日常经验相矛盾的数学结论,那些结论会使我们惊异无比.悖论是自相矛盾的命题.即如果承认这个命题成立,就可推出它的否定命题成立;反之,如果承认这个命题的否定命题成立,又可推出这个命题成立 如果承认它是真的,经过一系列正确的推理,却又得出它是假的;如果承认它是假的,经过一系列正确的推理,却又得出它是真的.古今中外有不少著名的悖论,它们震撼了逻辑和数学的基础,激发了人们求知和精密的思考,吸引了古往今来许多思想家和爱好者的注意力.解决悖论难题需要创造性的思考,悖论的解决又往往可以给人带来全新的观念.
悖论有三种主要形式:
1.一种论断看起来好像肯定错了,但实际上却是对的(佯谬).
2.一种论断看起来 好像肯定是对的,但实际上却错了(似是而非的理论).
3.一系列推理看起来好像无懈可击,可是却导致逻辑上自相矛盾.
把所有集合分为2类,第一类中的集合以其自身为元素,第二类中的集合不以自身为元素,假令第一类集合所组成的集合为P,第二类所组成的集合为Q,于是有:
P={A∣A∈A}
Q={A∣A¢A}(¢:不属于的符号,因为实在找不到)
问,Q∈P 还是 Q∈Q?
这就是著名的“罗素悖论”.罗素悖论还有一些较为通俗的版本,如理发师悖论等.
十九世纪下半叶,康托尔创立了著名的集合论,在集合论刚产生时,曾遭到许多人的猛烈攻击.但不久这一开创性成果就为广大数学家所接受了,并且获得广泛而高度的赞誉.数学家们发现,从自然数与康托尔集合论出发可建立起整个数学大厦.因而集合论成为现代数学的基石.“一切数学成果可建立在集合论基础上” 这一发现使数学家们为之陶醉.1900年,国际数学家大会上,法国著名数学家庞加莱就曾兴高采烈地宣称:“………借助集合论概念,我们可以建造整个数学大厦……今天,我们可以说绝对的严格性已经达到了……”
可是,好景不长.1903年,一个震惊数学界的消息传出:集合论是有漏洞的!这就是英国数学家罗素提出的著名的罗素悖论.罗素的这条悖论使集合理论产生了危机.它非常浅显易懂,而且所涉及的只是集合论中最基本的东西.所以,罗素悖论一提出就在当时的数学界与逻辑学界内引起了极大震动.德国的著名逻辑学家弗里兹在他的关于集合的基础理论完稿付印时,收到了罗素关于这一悖论的信.他立刻发现,自己忙了很久得出的一系列结果却被这条悖论搅得一团糟.他只能在自己著作的末尾写道:“一个科学家所碰到的最倒霉的事,莫过于是在他的工作即将完成时却发现所干的工作的基础崩溃了.”
1874年,德国数学家康托尔创立了集合论,很快渗透到大部分数学分支,成为它们的基础.到19世纪末,全部数学几乎都建立在集合论的基础之上了.就在这时,集合论中接连出现了一些自相矛盾的结果,特别是1902年罗素提出的理发师故事反映的悖论,它极为简单、明确、通俗.于是,数学的基础被动摇了,这就是所谓的第三次“数学危机”.
罗素的悖论发表之后,接着又发现一系列悖论(后来归入所谓语义悖论):