直线与圆填空题1若直线y=kx+1(k属于R)与焦点在x轴上的椭圆(x^2)/5+(y^2)/t=1恒有公共点,则t的取值范围是已知正方形ABCD,则以A,B为焦点,且过C,D两点的椭圆的离心率为已知F是椭圆C的一个焦

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/20 04:52:00
直线与圆填空题1若直线y=kx+1(k属于R)与焦点在x轴上的椭圆(x^2)/5+(y^2)/t=1恒有公共点,则t的取值范围是已知正方形ABCD,则以A,B为焦点,且过C,D两点的椭圆的离心率为已知F是椭圆C的一个焦
xRN@NRJP[&51DY>CŪB3e/x5hؙqw;̹N4*Au.[\fʂ>)hQ43|7PkgH"89leU\(etݭ,T:ޞy׬iU &uD%:pyĩU8,/%Pׇ5ĩD痤1=*n1e1!~nbz^Ԅ03aDž  5)~bQ)z[nSP𸬘u%Ď^IZN;օ  wnc>FMctXAr jMBBi=7ꔩsOmqQvR٧A0 dkIFj$( +xJɹE~2

直线与圆填空题1若直线y=kx+1(k属于R)与焦点在x轴上的椭圆(x^2)/5+(y^2)/t=1恒有公共点,则t的取值范围是已知正方形ABCD,则以A,B为焦点,且过C,D两点的椭圆的离心率为已知F是椭圆C的一个焦
直线与圆填空题1
若直线y=kx+1(k属于R)与焦点在x轴上的椭圆(x^2)/5+(y^2)/t=1恒有公共点,则t的取值范围是
已知正方形ABCD,则以A,B为焦点,且过C,D两点的椭圆的离心率为
已知F是椭圆C的一个焦点,B是短轴的一个端点,线段BF的延长线交C于点D,且向量BF=2向量FD,则C的离心率为

直线与圆填空题1若直线y=kx+1(k属于R)与焦点在x轴上的椭圆(x^2)/5+(y^2)/t=1恒有公共点,则t的取值范围是已知正方形ABCD,则以A,B为焦点,且过C,D两点的椭圆的离心率为已知F是椭圆C的一个焦
直线y=kx+1(k属于R)与焦点在x轴上的椭圆(x^2)/5+(y^2)/t=1恒有公共点,则t的取值范围是
解答:因为直线y=kx+1(k属于R)
所以,当x=0时,y=1
所以,直线y=kx+1(k属于R)始终经过点(0,1),只要此点位于椭圆x2/5+y2/t=1(t大于0)内部,他们就总有公共点
所以,t>=1
又,椭圆的焦点在x轴上,所以,t<5
所以,1=<t<5