若n-m表示[m,n](m<n)的区间长度,函数f(x)=√a-x+√x(a>0)的值域区间长度为2(√2-1),a=?思路我都会,就是不知道具体表示

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/16 04:42:18
若n-m表示[m,n](m<n)的区间长度,函数f(x)=√a-x+√x(a>0)的值域区间长度为2(√2-1),a=?思路我都会,就是不知道具体表示
xT]oA+cLnc$]!dMF& ,&k*PJKQШRY ޙY}ɘ43wW/fW> Y6 f:Bhdٲuf1۝0,@NjV %eUo:#*R@xow,wl|ޢ_hě70_T*D1KXUљnImG \i^5 Ԍ w+s\$7=(߹wRߌ4F Z1WXMUbTE6oX~GYج7łC;g\őׁ][ %'\/9HUN2*]%f鸞(i!-.`)tkr +vt(8D2EJiSr3bq[QEH

若n-m表示[m,n](m<n)的区间长度,函数f(x)=√a-x+√x(a>0)的值域区间长度为2(√2-1),a=?思路我都会,就是不知道具体表示
若n-m表示[m,n](m<n)的区间长度,函数f(x)=√a-x+√x(a>0)的值域区间长度为2(√2-1),a=?
思路我都会,就是不知道具体表示

若n-m表示[m,n](m<n)的区间长度,函数f(x)=√a-x+√x(a>0)的值域区间长度为2(√2-1),a=?思路我都会,就是不知道具体表示
是f(x)= √(a-x)+√x吧!
提示:易知f(x)的定义域为[0,a].
令y=f(x),则y>0,且y²=[√(a-x)+√x]²=a+2√[x(a-x)]=a+2√[-(x-a/2)²+a²/4],
当x=a/2时,y²取最大值2a,当x=0或a时,y²取最小值a,
从而f(x)的值域为[√a,√(2a)],区间长度为(√2-1)√a=2(√2-1),
所以√a=2,故a=4.

解,
定义域为 [0,a],因而可设 x = a (sink)^2, k在[0,pi()/2]
f(x) = √a-x+√x = √a(1-(sink)^2) +√a(sink)^2 = (cosk+sink)√a
而(cosk+sink )^2 = 1+ 2sink cosk = 1+ sin2k
所以 1<=(cosk+sink )^2 <= 2

全部展开

解,
定义域为 [0,a],因而可设 x = a (sink)^2, k在[0,pi()/2]
f(x) = √a-x+√x = √a(1-(sink)^2) +√a(sink)^2 = (cosk+sink)√a
而(cosk+sink )^2 = 1+ 2sink cosk = 1+ sin2k
所以 1<=(cosk+sink )^2 <= 2
即 1<= cosk+sink <= √2
从而得出f(x)的值域为 [√a,√2a ]
按题设 √2a-√a = √a = 2(√2-1}
则 a = 4(3-2√2)

收起