若limx→∞[(x²+1)/(x+1)-ax-b]=0,求a、b
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/24 13:48:33
xNP_Ĵ)=n4EvgrM.!
H! \[]=Sѥ霞?r2:;=fL"+C1VHZhgrLKw
si=VrR-HD IpME-ЯVǕVeSo!ش#5Y7k:lp9`S#IޮCxyqUT{L<L##ĻArk[)x'sܘ)/óMKaK[]~P<c]+նm[?]G6Yu
ONˇ{|3Z3= NaT+#&$r)wip
|7oc$
若limx→∞[(x²+1)/(x+1)-ax-b]=0,求a、b
若limx→∞[(x²+1)/(x+1)-ax-b]=0,求a、b
若limx→∞[(x²+1)/(x+1)-ax-b]=0,求a、b
将(x²+1)/(x+1)-ax-b通分得((1-a)x²-(a+b)x-b+1)/(x+1)
因为求极限的结果是0,所以1次项和二次项都必须为0,这样分子才是比分母低阶.故a=1,b=-1
∵lim(x->∞)[(x²+1)/(x+1)-ax-b]=lim(x->∞)[((1-a)x²-(a+b)x+(1-b))/(x+1)]=0
∴有1-a=0.........(1)
且lim(x->∞)[(-(a+b)x+(1-b))/(x+1)]=0
==>lim(x->∞)[...
全部展开
∵lim(x->∞)[(x²+1)/(x+1)-ax-b]=lim(x->∞)[((1-a)x²-(a+b)x+(1-b))/(x+1)]=0
∴有1-a=0.........(1)
且lim(x->∞)[(-(a+b)x+(1-b))/(x+1)]=0
==>lim(x->∞)[(-(a+b)+(1-b)/x)/(1+1/x)]=0
==>(-(a+b)+0)/(1+0)=0
∴有a+b=0.........(2)
解方程组(1)与(2),得a=1,b=-1
故a=1,b=-1。
收起