已知三角形ABC中,角A,B,C的对边分别a,b,c且根号3a=2bsinA1.求角B的大小.2.设a+c=3,b=2根号2,且B为锐角,求三角形ABC的面积.急,在考试.高一数学

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/19 20:37:22
已知三角形ABC中,角A,B,C的对边分别a,b,c且根号3a=2bsinA1.求角B的大小.2.设a+c=3,b=2根号2,且B为锐角,求三角形ABC的面积.急,在考试.高一数学
xSn@ k;^$6rKЦ *%HFIHi$`8S]ۜήkC{*`{gͼ7Rm?_mO|qQ*̽E`*A=;-Pd*swMJ]W64R,IGZx*1MpR->FU"51@l6񑶺9fn?F+e׶KמcvН&Q"o~^gv^߮4*MlL>xo=O~4OA

已知三角形ABC中,角A,B,C的对边分别a,b,c且根号3a=2bsinA1.求角B的大小.2.设a+c=3,b=2根号2,且B为锐角,求三角形ABC的面积.急,在考试.高一数学
已知三角形ABC中,角A,B,C的对边分别a,b,c且根号3a=2bsinA
1.求角B的大小.2.设a+c=3,b=2根号2,且B为锐角,求三角形ABC的面积.急,在考试.高一数学

已知三角形ABC中,角A,B,C的对边分别a,b,c且根号3a=2bsinA1.求角B的大小.2.设a+c=3,b=2根号2,且B为锐角,求三角形ABC的面积.急,在考试.高一数学
(1)由三角形面积公式:S=bcSinA/2=acSinB/2,可得:SinB=bSinA/a=√3/2,即B=60°、120°(因为是三角形内角,不可能大于180°).
(2)由a+c=3可得(a+c)^2=a^2+c^2+2ac=9(式1)
因为B为锐角,即B=60°,所以CosB=Cos60°=0.5,
由b=2√2,所以b^2=8,
由余弦定理:b^2=a^2+c^2-2acCosB=a^2+c^2-ac=8(式2)
用(式1)-(式2)有3ac=1(式3)
由a+c=3可得c=3-a,代入(式3)得:9a-3a^2=1,即:3a^2-9a+1=0.
解方程得:a=(9±√(81-4*3*1))/(2*3)=(9±√69)/6,
令a=(9+√69)/6,则c=3-a=(9-√69)/6;
令a=(9-√69)/6,则c=3-a=(9+√69)/6.
由三角形面积公式:
S=0.5acSinB=0.5((9+√69)/6)*((9-√69)/6)*(√3/2)=√3/12.