设3阶实对称矩阵,A特征值λ1=-1,λ2=λ3=1,属于λ1=-1的特征向量为a1=(0,1,1)T,求A设X=(x1,x2,x3)T为对应λ2=λ3=1的特征向量,则(a1,X)=0,得到0x1+x2+x3=0为求出基础解系,仅凭这一个方程0x1+x2+x3=0怎么设
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/20 16:49:04
xNP_[m! bЖH!FJwzˊWL4n9gt0]VL0Фx,-۰(-],`tM Ku[nV_Ub9y,=%0k|UeªDb*lQNcoB&QHH X4A1">bJH0
C`أ/."5F"DhʗTb+l!"'>16PXԟ3~L\)
K0mC41m^:bVٓvȦF7z6T5#qnj&8`6W""n;lYnwrhv(F\5*PMv~_'>~vR
设3阶实对称矩阵,A特征值λ1=-1,λ2=λ3=1,属于λ1=-1的特征向量为a1=(0,1,1)T,求A设X=(x1,x2,x3)T为对应λ2=λ3=1的特征向量,则(a1,X)=0,得到0x1+x2+x3=0为求出基础解系,仅凭这一个方程0x1+x2+x3=0怎么设
设3阶实对称矩阵,A特征值λ1=-1,λ2=λ3=1,属于λ1=-1的特征向量为a1=(0,1,1)T,求A
设X=(x1,x2,x3)T为对应λ2=λ3=1的特征向量,则(a1,X)=0,得到0x1+x2+x3=0
为求出基础解系,仅凭这一个方程0x1+x2+x3=0怎么设自由变量呢?有什么规定吗?
设3阶实对称矩阵,A特征值λ1=-1,λ2=λ3=1,属于λ1=-1的特征向量为a1=(0,1,1)T,求A设X=(x1,x2,x3)T为对应λ2=λ3=1的特征向量,则(a1,X)=0,得到0x1+x2+x3=0为求出基础解系,仅凭这一个方程0x1+x2+x3=0怎么设
利用:在实对称矩阵中 不同特征值所对应的特征向量彼此正交.
现在知道了λ1=-1的特征向量为a1=(0,1,1)T,λ2=λ3=1 的特征向量应该是和a1=(0,1,1)T 正交的向量,也就是 x2+x3=0 的基础解系.从而可求得:A
设A是3阶实对称矩阵,且A的特征值是1,1,-1则A*100=?
设3阶实对称矩阵A的特征值为-1,1,1,属于特征值-1的特征向量为a=[0 1 1]^t.
实对称矩阵 特征值设A是3阶实对称矩阵 启特征值为1,1,-1,且对应的特征向量为a=(1,1,1)b=(2,2,1)求A=?
设α为n阶对称矩阵A的对应于特征值λ的特征向量,求矩阵((P^-1)AP)^T对应于特征值λ的特征向量
设α是n阶对称矩阵A属于特征值λ的特征向量,求矩阵(P-1AP)T的属于特征值λ的特征向量
设3阶对称矩阵A的特征值分别是λ1=-53,λ,2=λ3=63,与特征值λ1=53对应的特征向量为P1=(-6,-6,3)T,求A设3阶对称矩阵A的特征值分别是λ1=-53,λ,2=λ3=63,与特征值λ1=53对应的特征向量为P1=(-6,-6,3)T,求矩阵A.
设3阶实对称矩阵A的特征值为-1,1,1,-1对应的特征向量为(0,1,1)的转置,求A设属于特征值1的特征向量为(x1,x2,x3)^T由于实对称矩阵属于不同特征值的特征向量正交故(x1,x2,x3)^T与a1=(0,1,1)^T正交.即
设3阶对称矩阵A有特征值2,1,1,对应于2的特征向量为a1=(1;-2;2),求矩阵A
设3阶实对称矩阵A的特征值分别是1,2,-2,a=(1,-1,1)'是A属于特征值1的一个特征向量,如何求出另外2个特征量?
设A是n阶实对称矩阵 P是n阶可逆矩阵 ,已知n维列向量β是属于特征值λ的特征限量,则矩阵(P^( -1) AP)倒置的上面问题只显示了一半设A是n阶实对称矩阵 P是n阶可逆矩阵 已知n维列向量β是属于特征
设3阶实对称阵A的特征值是1,2,3;矩阵A的对应与特征值1,2的特征向量分别为(-1,-1,1)T,(1,-2,-1)T.求矩阵A
已知三阶对称矩阵A的特征值为1,-2-3则|A-1|=
设α是n维非零实列向量,λ是一个非零实数,构造n阶实对称矩阵A,使得r(A)=1,并且α是A的特征向量特征值λ
大学题目 线性代数 设A是n阶实对称矩阵且满足A2=A,又设A的秩为r . 请证明A的特征值为1或0设A是n阶实对称矩阵且满足A2=A,又设A的秩为r . 请证明A的特征值为1或0
3阶实对称矩阵A,B=A^5-4A^3+E 可以推出B也是实对称矩阵吗?A的特征值为1,2,-2 特征值1的特征向量(1,-1,1)
设A为3阶实对称矩阵,A的特征值为1,1,-1.则A的2012次方的值为多少?
设A是3阶实对称矩阵,满足A∧2=3A,且R(A)=2,那么矩阵A的三个特征值是?
设A是秩为1的3阶实对称矩阵,且A的各行元素之和均为2,则A的特征值为?