△ABC中,b ²+c ²=a ²+bc,且向量AC•向量AB=4,求S△ABC.
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/05 18:58:44
x){4mkuԔ
-DHRΓSNYMu5y)bMR>
/[m2
O|guOh{gVr~=vzS()Yi{)VhTuh;@LE.'lжg
Ov/PH83gv>nvN?_d'`5lk
@Ánqh;FOz6yv8 vU
△ABC中,b ²+c ²=a ²+bc,且向量AC•向量AB=4,求S△ABC.
△ABC中,b ²+c ²=a ²+bc,且向量AC•向量AB=4,求S△ABC.
△ABC中,b ²+c ²=a ²+bc,且向量AC•向量AB=4,求S△ABC.
AC=b AB=c 余弦定理:cosA=(b ²+c ²-a ²)/2bc 变形 b ²+c ²-a ²=2bc·cosA b ²+c ²=a ²+bc变形 b ²+c ²-a ²=bc 所以cosA=1/2 sinA=(根号3)/2 向量AC•向量AB=4等价于bc·cosA=4 所以bc=8 ,S△ABC=(1/2)bc·sinA=(1/2)·8·(根号3)/2=2倍根号3