试证:对任意正整数n>1,有1/(n+1)+1/n+2+.+1/2n>1/2

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/05 16:39:21
试证:对任意正整数n>1,有1/(n+1)+1/n+2+.+1/2n>1/2
xPJ@ Yv*_EU[[T(E+RRmѦmr/8 6bB.yy3vQP\h0{5Ѻۮ͖UIXq .b`Q07"i6ZŒ氹jQSo ETv5FD+@T9!$UR?0ov~õӄLÇn0_OMDZ$IP/HAbP9rxqɆβݿa 8K.!;Ծ9z囿y_CUl*wt13R#mEąK^)4/٭ D7W!.kwー3+tqڋm

试证:对任意正整数n>1,有1/(n+1)+1/n+2+.+1/2n>1/2
试证:对任意正整数n>1,有1/(n+1)+1/n+2+.+1/2n>1/2

试证:对任意正整数n>1,有1/(n+1)+1/n+2+.+1/2n>1/2
n=2 时
1/3+1/4=7/12>1/2
设n=k时成立
即 1/(k+1)+1/(k+2)+.1/(2k)>1/2
n=k+1时
1/(k+2)+1/(k+3)+.1/(2k)+1/(2k+1)+1/(2k+2)>1/(k+2)+1/(k+3)+.1/(2k)+1/(2k+2)+1/(2k+2)=1/(k+1)+1/(k+2)+.1/(2k)>1/2

归纳验证略
当n=k(k>1)时,1/(k+1)+1/(k+2)+...+1/2k>1/2,假设成立
当n=k+1时,左式=1/(k+2)+1/(k+3)+...+1/2k+1/(2k+1)+1/(2k+2)
>1/2-1/(k+1)+1/(2k+1)+1/(2k+2)
=1/2+1/2(k+1)(2k+1...

全部展开

归纳验证略
当n=k(k>1)时,1/(k+1)+1/(k+2)+...+1/2k>1/2,假设成立
当n=k+1时,左式=1/(k+2)+1/(k+3)+...+1/2k+1/(2k+1)+1/(2k+2)
>1/2-1/(k+1)+1/(2k+1)+1/(2k+2)
=1/2+1/2(k+1)(2k+1).....通分
>1/2
其他步骤按格式写写就行。

收起