试证:对任意正整数n>1,有1/(n+1)+1/n+2+.+1/2n>1/2
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/05 16:39:21
xPJ@
Yv*_EU[[T(E+RRmѦmr/8 6bB.yy3vQP\h0{5Ѻۮ͖UIXq .b`Q07"i6Z氹jQSo ETv5FD+@ T9!$UR?0ov~õӄLÇn0_OMDZ$IP/HAbP9r xqɆβݿa
8K.!;Ծ9z囿y_CUl*wt13R#mEąK^)4/٭
D7W!.kwー3+tqڋm
试证:对任意正整数n>1,有1/(n+1)+1/n+2+.+1/2n>1/2
试证:对任意正整数n>1,有1/(n+1)+1/n+2+.+1/2n>1/2
试证:对任意正整数n>1,有1/(n+1)+1/n+2+.+1/2n>1/2
n=2 时
1/3+1/4=7/12>1/2
设n=k时成立
即 1/(k+1)+1/(k+2)+.1/(2k)>1/2
n=k+1时
1/(k+2)+1/(k+3)+.1/(2k)+1/(2k+1)+1/(2k+2)>1/(k+2)+1/(k+3)+.1/(2k)+1/(2k+2)+1/(2k+2)=1/(k+1)+1/(k+2)+.1/(2k)>1/2
归纳验证略
当n=k(k>1)时,1/(k+1)+1/(k+2)+...+1/2k>1/2,假设成立
当n=k+1时,左式=1/(k+2)+1/(k+3)+...+1/2k+1/(2k+1)+1/(2k+2)
>1/2-1/(k+1)+1/(2k+1)+1/(2k+2)
=1/2+1/2(k+1)(2k+1...
全部展开
归纳验证略
当n=k(k>1)时,1/(k+1)+1/(k+2)+...+1/2k>1/2,假设成立
当n=k+1时,左式=1/(k+2)+1/(k+3)+...+1/2k+1/(2k+1)+1/(2k+2)
>1/2-1/(k+1)+1/(2k+1)+1/(2k+2)
=1/2+1/2(k+1)(2k+1).....通分
>1/2
其他步骤按格式写写就行。
收起
试证:对任意正整数n>1,有1/(n+1)+1/n+2+.+1/2n>1/2
证明:对任意正整数n,不等式In(n+1)
证明对任意的正整数n,不等式In(n+1)/n<(n+1)/n^2证明对任意的正整数n,不等式In(n+1)/n
证明对任意正整数n,不等式ln(1/n+1)>1/n^2-1/n^3
试证:对任意的正整数n,有1/1*2*3+1/2*3*4+……+1/n(n+1)*(n+2)
试证;对任意的正整数n,有1/(1*2*3)+1/(2*3*4)+.+1/n(n+1)(n+2)
试证:对任意的正整数n,有1/1*2*3+1/2*3*4+L+1/n(n+1)(n+2)
试证:对任意正整数n,有1/(1*2*3)+1/(2*3*4)+…+1/(n(n+1)(n+2))
证明:对任意的正整数n,有1/1×3+1/2×4+1/3×5+.+1/n(n+2)
证明:对任意大于1的正整数n,有1/2*3+1/3*4+L+1/n(n+1)
证明(1/n)^n+(2/n)^n+……+(n-1/n)^n > (n-1)/2(n+1) 对任意n正整数成立
证明对任意的正整数n,不等式nlnn>(n-1)ln(n-1)都成立
证明对任意的正整数n,不等式nlnn≥(n-1)ln(n+1)都成立
证明:对任意正整数n,不等式ln(n+1)/n
对任意正整数n,根号[(n+2)/n]与根号[(n+3)/(n+1)]的大小关系是
对任意是正整数n,f(n)也是正整数,且f(n+1)>f(n),f(3n)=3f(n),求f(2012)=_________
对任意的正整数n 有1/1*2*3+1/2*3*4+...+1/n(n+1)(n+2)< 1/4
证明:对任意的正整数n,有1/(1×2×3)+2/(2×3×4)+…+1/n(n+1)(n+2)<1/4