设斜率为根号2/2的直线l与椭圆x²/a²+y²/b²=1(a>b>0)交于不同的两点,且这两个交点在x轴上的射影恰好是椭圆的两个焦点,则该椭圆的离心率为

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/15 17:25:39
设斜率为根号2/2的直线l与椭圆x²/a²+y²/b²=1(a>b>0)交于不同的两点,且这两个交点在x轴上的射影恰好是椭圆的两个焦点,则该椭圆的离心率为
xRN0~9fb4QlCf!"Q@D.[x>[wvMecߵq=3Op*[wiln$)V%-j -=.K*qhl qoE  ~u٘`aFf~c A

设斜率为根号2/2的直线l与椭圆x²/a²+y²/b²=1(a>b>0)交于不同的两点,且这两个交点在x轴上的射影恰好是椭圆的两个焦点,则该椭圆的离心率为
设斜率为根号2/2的直线l与椭圆x²/a²+y²/b²=1(a>b>0)交于不同的两点,且这两个交点在x轴上的射影恰好是椭圆的两个焦点,则该椭圆的离心率为

设斜率为根号2/2的直线l与椭圆x²/a²+y²/b²=1(a>b>0)交于不同的两点,且这两个交点在x轴上的射影恰好是椭圆的两个焦点,则该椭圆的离心率为
把y=x/√2+m代入x^2/a^2+y^2/b^2=1(a>b>0)得
b^2x^2+a^2(x^2/2+√2mx+m^2)=a^2b^2,
整理得(b^2+a^2/2)x^2+√2ma^2*x+a^2(m^2-b^2)=0,①
依题意土c是①的两根,
所以m=0,-a^2b^2/(b^2+a^2/2)=-c^2,
所以a^2(a^2-c^2)=c^2(3a^2/2-c^2),
整理得a^4-(5/2)a^2c^2+c^4=0,
(a^2-c^2/2)(a^2-2c^2)=0,
所以a^2=2c^2,
(c/a)^2=1/2,
所以c/a=√2/2,为所求.