设O为坐标原点,点M的坐标为(2,1),若N(x,y)满足不等式组:①x-4y+3≤0,②2x+y-12≤0,③x≥1,则y+4/x+1的取值范围是?

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/28 10:39:34
设O为坐标原点,点M的坐标为(2,1),若N(x,y)满足不等式组:①x-4y+3≤0,②2x+y-12≤0,③x≥1,则y+4/x+1的取值范围是?
xRN@P[1@A+MIX4Zc+<B)y4ĸqbw3;xu2#s1IUmzɱ0v ]vb)\"4+裁,u[ % {F{MQ $8 [gtd`WN.K)?#v{d~ZҰ^tGr\5;,Ʀ Z|WD4d*A+4Kۢ#ǤM͢%<cP+-Q>◼{zus%3>

设O为坐标原点,点M的坐标为(2,1),若N(x,y)满足不等式组:①x-4y+3≤0,②2x+y-12≤0,③x≥1,则y+4/x+1的取值范围是?
设O为坐标原点,点M的坐标为(2,1),若N(x,y)满足不等式组:①x-4y+3≤0,②2x+y-12≤0,③x≥1,则y+4/x+1的取值范围是?

设O为坐标原点,点M的坐标为(2,1),若N(x,y)满足不等式组:①x-4y+3≤0,②2x+y-12≤0,③x≥1,则y+4/x+1的取值范围是?
这是一个线性规划问题.画图可知,可行域是由不等式组构成的三角形.
OM•ON=|OM|•|ON|•cos∠MON
所以|ON|•cos∠MON=OM•ON/|OM|=(2x+y)/√5
由于目标函数|ON|•cos∠MON=(2x+y)/√5 与 可行域一条边界2x+y-12=0平行,
故边界2x+y-12=0上任意一点都是最优解,
从而目标函数|ON|•cos∠MON=(2x+y)/√5的最大值为12/√5=12√5/5

设o为坐标原点 点m(2,1)点N(x,y)设o为坐标原点 点m(2,1)点N(x,y)满足 x≤3 ,x-y+6≥0 ,x+y≥0,则向量OM与向量ON的乘积的取值范围 点M(2,3)关于原点O的对称点M’的坐标为 如图,在平面直角坐标系中,O为原点,A点坐标为(-8,0),B点坐标为(2,0),C点坐标为(0,-4)(1)求图象经过A,B,C三点的抛物线的解析式;(2)设M点为(1)中抛物线的顶点,求直线MC的解析式 如图,在平面直角坐标系中,O为原点,A点坐标为(-8,0),B点坐标为(2,0),C点坐标为(0,-4)1)求图像经过A,B三点的抛物线的解析式2)设M点为(1)中抛物线的顶点,求直线MC的解析式 点(1,-2)关于原点 O的中心对称点坐标为 1、直角坐标平面内,点A坐标为(-3,4),点B坐标为(8,6),点O为坐标原点在直角坐标平面内,点A坐标为(-3,4),点B坐标为(8,6),点O为坐标原点.(1)判断△AOB的类型,并说明理由(2)求OB边上中线的长 已知三角形ABC,A点的坐标是(-3,0),重心G的坐标是(-1/2,-1),O为坐标原点,M为边BC的中点,OM垂直BC,求BC方程 【初三中考数学】如图,在矩形ABCO中,O为坐标原点,B的坐标为(8,6),A、如图,在矩形ABCO中,O为坐标原点,B的坐标为(8,6),A、C分别在坐标轴上,P是线段BC上的动点,设PC=m;已知点D在第一象限,且 如图甲,已知抛物线经过坐标原点O和x轴上另一点E,顶点M的坐标为(2,4);矩形ABCD的顶点A与点O重.如图甲,已知抛物线经过坐标原点O和x轴上另一点E,顶点M的坐标为(2,4);矩形ABCD的顶点A与点O 设p为双曲线x^2/4-y^2=1上一动点,o为坐标原点,m为线段op的中点,则点m的轨迹方程是? 谢谢啦 已知直线l:y=3x+2交抛物线y=2x^2于A,B两点,O为坐标原点.已知直线l:y=3x+2交抛物线y=2x^2于A,B两点,o为坐标原点.(1)求三角形AOB的面积.(2)设抛物线在点A、B处的切线交于点M,求点M的坐标. 已知点A的坐标为(2,1),O为坐标原点,在x轴上找一点P,使△AOP为等腰三角形,并写出点P的坐标? 设椭圆方程为 x2+y24=1,求点M(0,1)的直线l交椭圆于点A、B,O为坐标原点,点P满足 op设椭圆方程为 x2+y24=1,求点M(0,1)的直线l交椭圆于点A、B,O为坐标原点,点P满足 op→=12OA→+OB→,当l绕点M旋转时,求 点M(2,-1)关于x轴对称的点的坐标是,关于原点对称的点的坐标为 设圆O:x的平方加y的平方等于4,O为坐标原点(急)设圆O:x的平方加y的平方等于4,O为坐标原点(1)若直线L过点P(1,2),且圆心O到直线L的距离等于1,求直线L的方程 点M(-3,1)关于原点对称的点M'的坐标为() 如图1,在平面直角坐标系中,O是坐标原点,平行四边形ABCD的顶点A的坐标为(-2,0),点D的坐标为(0,2√3如图1,在平面直角坐标系中,O是坐标原点,平行四边形ABCD的顶点A的坐标为 (-2,0),点D的坐标 设椭圆E:x^2/a^2+y^2/b^2=1过点M(2,根号2),N(根号6,1)两点,O为坐标原点