求不定积分∫xln(x+1)dx

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/26 09:00:42
求不定积分∫xln(x+1)dx
xUn@j-΅ϰ "PCD E"(8UT"bRyp/0^-8BEޙf7oެVx/'윎ǟNG!:~;@ﶚ(G" EL1t\'mf%țNv ndhF̰7X"yIچ{Y1*N3?i|Qτ__4ȼӸ3m\ $I#Y;OL+ڀ*ul"`{,YYv#MW

求不定积分∫xln(x+1)dx
求不定积分∫xln(x+1)dx

求不定积分∫xln(x+1)dx
∫xln(x+1)dx
=∫ln(x+1)d(1/2*x^2)
=1/2×x^2×ln(x+1)-1/2×∫x^2dln(x+1)
=1/2×x^2×ln(x+1)-1/2×∫x^2/(x+1)dx
=1/2×x^2×ln(x+1)-1/2×∫[x-1+1/(x+1)]dx
=1/2×x^2×ln(x+1)-1/2×[1/2×x^2-x+ln(x+1)]+C
=1/2×(x^2-1)×ln(x+1)-1/4×(x^2-2x)+C

∫xln(x+1)dx
=∫(x+1)ln(x+1)d(x+1)-∫ln(x+1)d(x+1)
=0.5(∫ln(x+1)d(x+1)^2-∫ln(x+1)d(x+1))
=0.5((x+1)^2ln(x+1)-∫(x+1)^2dln(x+1)-(x+1)ln(x+1)+∫(x+1)dln(x+1))
=0.5((x+1)^2ln(x+1)-∫(x+1)dx-(x+1)ln(x+1)+∫dx)
=0.5((x+1)^2ln(x+1)-0.5x^2-x-(x+1)ln(x+1)+x)
=0.5(x+1)^2ln(x+1)-0.25x^2-0.5(x+1)ln(x+1)+C

用分布积分公式
∫uv'=uv-∫u'v 把x看成u ln(x+1)看成v
所以原式=(x*x/2)*ln(x+1)-(1/2)∫(x*x)/(x+1)dx
再看∫(x*x)/(x+1)dx=∫[(x+1)(x-1)+1]/(x+1)dx
=∫[(x-1)+1/(x+1)]dx
=...

全部展开

用分布积分公式
∫uv'=uv-∫u'v 把x看成u ln(x+1)看成v
所以原式=(x*x/2)*ln(x+1)-(1/2)∫(x*x)/(x+1)dx
再看∫(x*x)/(x+1)dx=∫[(x+1)(x-1)+1]/(x+1)dx
=∫[(x-1)+1/(x+1)]dx
=∫(x-1)dx+∫1/(x+1)dx
=∫xdx-∫dx+∫1/(x+1)d(x+1)
=1/(2x*x)-x+ln|x+1|
把这个结果代入上式即可

收起

用分部积分公式
∫xln(x+1)dx=x^2ln(x+1)-∫[xln(x+1)+x^2/(x+1)]dx=x^2ln(x+1)-∫xln(x+1)dx-∫x^2/(x+1)dx……(1)
∫x^2/(x+1)dx=∫[(x+1)-2+1/(x+1)]dx=x^2/2-x+ln(x+1)+c
令∫xln(x+1)dx=y
由(1)式得y...

全部展开

用分部积分公式
∫xln(x+1)dx=x^2ln(x+1)-∫[xln(x+1)+x^2/(x+1)]dx=x^2ln(x+1)-∫xln(x+1)dx-∫x^2/(x+1)dx……(1)
∫x^2/(x+1)dx=∫[(x+1)-2+1/(x+1)]dx=x^2/2-x+ln(x+1)+c
令∫xln(x+1)dx=y
由(1)式得y=x^2ln(x+1)-y-[x^2/2-x+ln(x+1)]
解出y=[x^2ln(x+1)]/2-[x^2/2-x+ln(x+1)]/2=-x^2/4+x/2-(x^2-1)[ln(x+1)]/2

收起