已知tan(a+b)=5,tan(b-pai/4)=4,那么tan(a+pai/4)=多少?pai/4实际上是45°A.-9/19 B.1/21 C.1/19 D.9/21麻烦说明原因,

来源:学生作业帮助网 编辑:作业帮 时间:2024/12/02 15:03:17
已知tan(a+b)=5,tan(b-pai/4)=4,那么tan(a+pai/4)=多少?pai/4实际上是45°A.-9/19 B.1/21 C.1/19 D.9/21麻烦说明原因,
x){}KKHNzTM-H7Ѵ5yٴ*%nh=]7';Xobzh3\,v?o^bg3:{MR>6{2Vev6*ЌPx>eų9{6uCŋ+/٥lkxo?.Ӂh 51blp9,m$,ѪQmakRikձ`l !lXE ȵ<혉 S  BV MoQ] ~|}!./: `

已知tan(a+b)=5,tan(b-pai/4)=4,那么tan(a+pai/4)=多少?pai/4实际上是45°A.-9/19 B.1/21 C.1/19 D.9/21麻烦说明原因,
已知tan(a+b)=5,tan(b-pai/4)=4,那么tan(a+pai/4)=多少?
pai/4实际上是45°
A.-9/19 B.1/21 C.1/19 D.9/21
麻烦说明原因,

已知tan(a+b)=5,tan(b-pai/4)=4,那么tan(a+pai/4)=多少?pai/4实际上是45°A.-9/19 B.1/21 C.1/19 D.9/21麻烦说明原因,
tan(a+pai/4)=x 用未知数x表示,比较简便
tan(a+b)=tan[(a+pi/4)+(b-pi/4)]
=[tan(a+pi/4)+tan(b-pi/a)]/[1-tan(a+pi/4)*tan(b-pi/a)]
=(x+4)/(1-4x)=5
tan(a+pai/4)=x=1/21
B

设tan(a+pai/4)=x,则
tan(a+b)=[tan(a+pai/4)+tan(b-pai/4)]/[1-tan(b-pai/4)*tan(a+pai/4)],
即(x+4)/(1-4x)=5,
解得x=1/21,所以选B