如图,等腰三角形ABC中,角ABC=90度,AD为腰CB上的中线,CE垂直于AD,求证角CDA=角EDB

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/19 06:18:46
如图,等腰三角形ABC中,角ABC=90度,AD为腰CB上的中线,CE垂直于AD,求证角CDA=角EDB
xn0oe*'Dĉ ͤ8?7 @I[Zv@BB0&@Kr[u M=ّϯ??y_XG;?^wsN>> x Xgh5(A5~ћxg?? "חC8FC4/Jm}mIͦ_ݾ+oºT~j5ZZkTz,EM+ZӢnޯ.ۑвRfmm\>Y:Y܈S܄ǀ-v=lF%$

如图,等腰三角形ABC中,角ABC=90度,AD为腰CB上的中线,CE垂直于AD,求证角CDA=角EDB
如图,等腰三角形ABC中,角ABC=90度,AD为腰CB上的中线,CE垂直于AD,求证角CDA=角EDB

如图,等腰三角形ABC中,角ABC=90度,AD为腰CB上的中线,CE垂直于AD,求证角CDA=角EDB

过B点作BF⊥BC,交CE延长线于F
则∠CBF=∠ACD=90º
∵AD⊥CE
∴∠BCE+∠CDA=90º
∵∠CAD+∠CDA=90º
∴∠BCE=∠CAD
∵AC=BC
∴⊿ACD≌⊿CBF(ASA)
∴CD=BF,∠CDA=∠F
∵CD=BD
∴BD=BF
∵∠ABC=45º,∠CBF=90º
∴∠ABC=∠ABF=45º
又∵BE=BE
∴⊿DBE≌⊿FBE(SAS)
∴∠F=∠EDB
∴∠CDA=∠EDB