定义在(0,π/2)上的函数f(x)的导函数为f'(x),且满足f(π/6)=1/2 f(x)

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/28 01:25:28
定义在(0,π/2)上的函数f(x)的导函数为f'(x),且满足f(π/6)=1/2 f(x)
xRN@&&ZBjb钟 I$¢˚`l 1E +'gN\6SGͱwi`QpmjV.l*x?B]&]v>ѭ"q>㫢S~Z$FP z@6aD,,VȨAKk"uh_]tL2^ xt)dD#r B4@~_ :.

定义在(0,π/2)上的函数f(x)的导函数为f'(x),且满足f(π/6)=1/2 f(x)
定义在(0,π/2)上的函数f(x)的导函数为f'(x),且满足f(π/6)=1/2 f(x)

定义在(0,π/2)上的函数f(x)的导函数为f'(x),且满足f(π/6)=1/2 f(x)
因为x∈(0,π/2 ),所以sinx>0,cosx>0.由f(x)<f′(x)tanx,得f(x)cosx<f′(x)sinx.即f′(x)sinx-f(x)cosx>0.令g(x)=f(x)/sinx x∈(0,π/2 ),则g′(x)=[f′(x)sinx−f(x)cosx ]/sin2x >0.所以函数g(x)=f(x)/sinx 在x∈(0,π/2 )上为增函数,f(π/6)=1/2,sinπ/6=1/2,f(π/6)/sinπ/6=1 要使f(x)>sinx必有f(x)/sinx>1 ,sinx>0 所以x的区间是(π/6,π/2)

f(x)两边同时乘cosx,得到
f(x)cosx即f'(x)sinx-f(x)cosx>0
构造F(x)=f(x)/sinx
则F'(x)=[f'(x)sinx-f(x)cosx]/(sinx)^2>0
所以F(x)为增函数
因为F(π/6)=f(π/6)/sin(π/6)=1
所以当x>π/6时,F(x)>1
即f(x)/sinx>1
即f(x)>sinx