若存在过点(1,0)的直线与曲线y=x³和y=ax²+15x/4-9都相切,求a的值
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/20 10:44:07
x]N@⓶L K!0ĤVH Dc hB4-x[~㻾9w)Ÿ&<ƓjTL}[ԯEӨݏI^7(57GWAk(}2.RZ5!(#Cw*I$\=U͒`$HA"KB|DоI=
Qܩ֓f//sls{}H n#qMjV0t=F bT&Ia6rCb k*%irb:EV2s
T尶FC_4yAeC?(&_
H
若存在过点(1,0)的直线与曲线y=x³和y=ax²+15x/4-9都相切,求a的值
若存在过点(1,0)的直线与曲线y=x³和y=ax²+15x/4-9都相切,求a的值
若存在过点(1,0)的直线与曲线y=x³和y=ax²+15x/4-9都相切,求a的值
设切点为(x0,y0)
求导:y'=3x^2
y0/(x0-1)=3x0^2
y0=x0^3
解得(0,0)或(3/2,27/8)(看起来很奇怪,但是我们老师说过0,0的也算切线)
所以直线为y=0或y=27x/4-27/4
y=0时,ax^2+15x/4-9=0
Δ=(15/4)^2-4a*(-9)
=0
a=-64/25
y=27x/4-27/4时 ax^2-3x-9/4=0
Δ=(-3)^2-4a*(-9/4)
=0
a=-1
所以a=-64/25或-1
若存在过点(1,0)的直线与曲线y=x^3和y=ax^2+15/4x-9都相切,求a?
若存在过点(1,0)的直线与曲线y=x^3和y=ax^2+15/4x-9都相切,求a
若存在过点(1,0)的直线与曲线y=x^3和y-ax^2+15/4x-9都相切,则a=?
若存在过点(1,0)的直线与曲线y=x^3和y-ax^2+15/4x-9都相切,则a=?
若存在过点(1,0)的直线与曲线y=x^3和y=ax^2+15/4-9相切,求a怎么算啊
若存在过点(1,0)的直线与曲线y=x^3和y=ax^2+15/4x-9都相切,求a值.若存在过点(1,0)的直线与曲线y=x^3和y=ax^2+15/4x-9都相切,求a值.
若存在过点(1,0)的直线与曲线y=x^2和y=ax^2+15/4-9相切,求a怎么算啊若存在过点(1,0)的直线与曲线y=x^3和y=ax^2+15/4x-9相切,求a发错
若存在过点(1,0)的直线与曲线y=x的三次方和y=ax的平方+15/4(x)-9都相切,求a的值(2009江西(文))
若存在过点(1,0)的直线与曲线Y=X^3和Y=aX^2+15/4X-9都相切,求a的值
若存在过点(1,0)的直线与曲线Y=X^3和Y=aX^2+15/4X-9都相切,求a的值
若存在过点(1,0)的直线与曲线y=x³和y=ax²+15x/4-9都相切,求a的值
若存在过点(1,0)的直线与曲线y=x^3和y=ax^2+15x/4-9都相切,求a的值
若存在过点(1,0)的直线,与曲线y=x^3和y=ax^2+15x/4-9都相切,则a的值为
若存在过点(1,0)的直线与曲线y=x^3和y=ax^2+(15/4)x-9都相切,则a的值为、、?
若存在过点(1,0)的直线与曲线y=x^3和y=ax^2+15/4x-9都相切,求实数a 的值
若存在过点(1,0)的直线与曲线y=x 三次方和y=ax ²+15/4x-9都相切,则a等于( )
若存在过点(1,0)的直线与曲线y=x 三次方和y=ax ²+15/4x-9都相切,则a等于( )
若存在过点(1,0)的直线与曲线y=x^3和y=ax^2+15/4x–9都相切,则a等于