设二次函数f(x)=ax^2+bx+c(a、b、c为常数)的导函数为f'(x),对任意X∈R,不等式f(x)≥f'(x)恒成立.则b^2/(a^2+c^2)的最大值为.
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/29 13:28:26
x͓Mo@
Rf]VRdrRq DikQCQ? QS 5:B[\s;;کJfһ
=fJbդr*IU+S>GNx(1g]!um?~3t`rav+}X2JXlR %ىsF(*=S5ImCJ"YCřcRݐZEʊ&HVJ뢃噰~bWQHlB
XN$8cw99_0.Wl 5=hIL֤KrdTo9/ᓳ,WiDna`[{_Vvx&Ew1+IIM|%=|x61.tcpe4#.A
h )?|#EBJHﬤUyy屜HiT]:"f/T~X1Ah/ /pi"WCJD^
ik0O+? m|
设二次函数f(x)=ax^2+bx+c(a、b、c为常数)的导函数为f'(x),对任意X∈R,不等式f(x)≥f'(x)恒成立.则b^2/(a^2+c^2)的最大值为.
设二次函数f(x)=ax^2+bx+c(a、b、c为常数)的导函数为f'(x),对任意X∈R,不等式f(x)≥f'(x)恒成立.则b^2/(a^2+c^2)的最大值为.
设二次函数f(x)=ax^2+bx+c(a、b、c为常数)的导函数为f'(x),对任意X∈R,不等式f(x)≥f'(x)恒成立.则b^2/(a^2+c^2)的最大值为.
F(X)=AX^2+BX+C,所以F'(X)=2AX+B
对任意的X∈R,f(x)≥f'(x)恒成立
即AX^2+(B-2A)X+C-B≥0恒成立
该为二次函数抛物线,且函数值不小于0
所以A>0且判别式不大于0
带入数据可得A>0且4AC-4A^2≥B^2
所以(4AC-4A^2)/(A^2+C^2)≥B^2/(A^2+C^2)
所以要求的最大值为(4AC-4A^2)/(A^2+C^2)
因为A>0,上下同时除以A^2得
(C/A-1)/1+(C/A)²*4
设C/A=T
那么要求的最大值为 (T-1)/(T^2+1)*4
变形整理得(T-1)/(T-1)^2+2(T-1)+2 *4
设T-1=M
那么要求的最大值为 4M/(M^2+2M+2)
上下同时除以M得
4/(M+2/M+2)
若要得到最大值,只需 M+2/M最小即可
因为M+2/M≥2√2
所以要求的最大值为
2√2-2
回答完毕,
1、设二次函数f(x)=ax(平方)+bx+c满足f(x+1)-f(x)=2x
二次函数f(x)=ax^2+bx+c(a
二次函数f(x)=ax^2+bx+c(a
设函数f(x)=ax^2+bx+c (a
设二次函数 f(x)=ax^2+bx+c ,函数F(x)=f(x)-x 的两个零点为m、n(m0且0
已知二次函数f(x)=ax^2+bx+c 讨论函数f(x)的奇偶性
设abc小于0,二次函数f(x)=ax∧2+bx+c的图像可能是
已知二次函数f(x)=ax²+bx+c
二次函数f(x)=ax平方+bx+c(a
设二次函数f(x)=ax^2+bx+c的一个零点是-1,且满足[f(x)-x]*[f(x)-(x^2+1)/2]
设二次函数f(x)=ax^2+bx+c的一个零点是-1,且满足[f(x)-x]*[f(x)-(x^2+1)/2]
设二次函数y=ax^2+bx+c(a
设二次函数y=ax^2+bx+c(a
设二次函数y=ax^2+bx+c (a
已知二次函数f(x)=ax^2+bx+c,若不等式f(x)
已知二次函数f(x)=ax^2+bx+c,且不等式f(x)
设二次函数f(x)=ax方+bx+c,若f(x1)=f(x2)(其中x1不等于x2)则f((x1+x2)/2)等于
设函数f(x)=ax²+bx+c(a