已知0

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/28 06:31:25
已知0
xTJ@Af2ԤR]n J)TJmNu_p&3IglJrp眹3'ԪɰAZ# jJxpT&**l桪~>y 2?/Yڴߠ| TK;q%٬{*)'{Cg\DcDwv"܆2(/;^z~s4Ѐ͉@t@[l*yi+0Tq&mD@:GCv;G IV , Y, inZUJ&?

已知0
已知0

已知0
∵x是三角形的一个内角,∴sinx>0.
又∵0<a<1,∴a²-1<0,∴2a:(a²-1)<0,而sinx:cosx=2a:(a²-1),
∴cosx<0,(sinx/cosx)²=sin²x/cos²x=(1-cos²x)/cos²x=1/cos²x-1=(2a/(a²-1))²,
∴1/cos²x=(2a/(a²-1))²+1=(4a²+(a²-1)²)/(a²-1)²=(a²+1)²/(a²-1)²,
cosx=(a²-1)/(a²+1).

∵x是三角形的一个内角,∴sinx>0。
∵0<a<1,∴a^2-1<0,∴2a∶(a^2-1)<0,而sinx∶cosx=2a∶(a^2-1),∴cosx<0。
由sinx∶cosx=2a∶(a^2-1),得:2acosx=(a^2-1)sinx,
∴4a^2(cosx)^2=(a^2-1)^2[1-(cosx)^2],
∴[4a^2+(a^2-1)^2](cos...

全部展开

∵x是三角形的一个内角,∴sinx>0。
∵0<a<1,∴a^2-1<0,∴2a∶(a^2-1)<0,而sinx∶cosx=2a∶(a^2-1),∴cosx<0。
由sinx∶cosx=2a∶(a^2-1),得:2acosx=(a^2-1)sinx,
∴4a^2(cosx)^2=(a^2-1)^2[1-(cosx)^2],
∴[4a^2+(a^2-1)^2](cosx)^2=(a^2-1)^2,
∴(4a^2+a^4-2a^2+1)(cosx)^2=(a^2-1)^2,
∴(a^2+1)^2(cosx)^2=(a^2-1)^2,
∴(a^2+1)cosx=a^2-1,
∴cosx=(a^2-1)/(a^2+1)。

收起