解不等式 (lnx)^2-lnx^2-3>0..

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/16 06:22:54
解不等式 (lnx)^2-lnx^2-3>0..
x0_#BG= &L5ґDj&WZ+8w"港.iu/7ęfM"/b2 ~4 rPa 6jkB ֫T MۦXE0MIȎi!Z,8  M4bB0H\ ?KOHv6#;qD}Fߧ} &ɝ

解不等式 (lnx)^2-lnx^2-3>0..
解不等式 (lnx)^2-lnx^2-3>0
..

解不等式 (lnx)^2-lnx^2-3>0..
(lnx)^2 - 2lnx - 3 > 0;
(lnx+1)(lnx-3)>0;
所以:lnx+1>0,lnx-3>0 或者 lnx+1

(lnx)^2-lnx^2-3>0
(lnx)^2-2lnx-3>0
(lnx-3)(lnx+1)>0
lnx>3或lnx<-1
x>e^3或0

设lnx=k
k*k-2k-3>0
(k-3)*(k+1)>0
k=3或 k=-1
所以x=e^3 或x=e^-1