1/(1+sinx+cosx)的积分

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/05 14:47:41
1/(1+sinx+cosx)的积分
x)3P83B;9Z/_&H;"x{ImIbFӎ F%%q@A>[ C].Rɮg3C܅P;ٰX դX9=lдJCTx6Qj4) @hTZ (n+ʦ5`w ɳΆ'b [ 1T

1/(1+sinx+cosx)的积分
1/(1+sinx+cosx)的积分

1/(1+sinx+cosx)的积分
令t=tan(x/2),则sinx=(2t)/(1+t^2),cosx=(1-t^2)/(1+t^2),dx=(2dt)/(1+t^2),于是
1+sinx+cosx=1+[(2t)/(1+t^2)]+[(1-t^2)/(1+t^2)]=(2+2t)/(1+t^2),即1/(1+sinx+cosx)=(1+t^2)/(2+2t)
故∫1/(1+sinx+cosx)dx =∫[(1+t^2)/(2+2t)]*[ (2dt)/(1+t^2)]=∫[1/(1+t)]dt=ln|1+t|+C
又t=tan(x/2),所以∫1/(1+sinx+cosx)dx=ln|1+tan(x/2)|+C