证明函数y=x的3/2次幂 单调性

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/18 20:30:31
证明函数y=x的3/2次幂 单调性
x){ٌ{MPi[|Vѳ5 lRx;ņg mT_`gC/M{t';vUijeu6<ٽŲg*7t@\nߓݻٱ "tݬ';;Ο_s)F m +~r

证明函数y=x的3/2次幂 单调性
证明函数y=x的3/2次幂 单调性

证明函数y=x的3/2次幂 单调性
首先因为y=x^(3/2)
所以要求x》0
设任意0《x1《x2
f(x2)-f(x1)=x2^(3/2)-x1^(3/2)>0
所以在x》0上为单调递增的函数

这个函数定义域x≥0
是单增函数

首先因为y=x^(3/2)
所以要求x》0
设任意0《x1《x2
f(x2)-f(x1)=x2^(3/2)-x1^(3/2)>0
所以在x》0上为单调递增的函数