在数列{an}中,已知a1=7/2,an=3a(n-1)+3^n-1(n≥2,n属于N*).(1.)求证:{(an-1/2)/3^n}是等差数列.(2.)求数列{an}的通项公式an及它的前n项和Sn.

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/20 16:42:44
在数列{an}中,已知a1=7/2,an=3a(n-1)+3^n-1(n≥2,n属于N*).(1.)求证:{(an-1/2)/3^n}是等差数列.(2.)求数列{an}的通项公式an及它的前n项和Sn.
xSN@Hkl$ZؐɁ( ( ,XPh&|*qlDl,{8Wʋ`໽΁z#uRgĴt9KA͞‡0ܰt&ʘd *B]N]MK1fw^]3`Ui<-uko].U((mesYM*B]dϽ.ثDmN!Y'UL{H,؈!q`)Twhbvx? $H8m?[zIC5ıGFM 1 "acZ|qcӠE K +0InF%>n%Vϝਁ TmRtfǫO7GoTm24E[V"AG ͺ b3ls8FcwǙSx $Ɉ%/I4w

在数列{an}中,已知a1=7/2,an=3a(n-1)+3^n-1(n≥2,n属于N*).(1.)求证:{(an-1/2)/3^n}是等差数列.(2.)求数列{an}的通项公式an及它的前n项和Sn.
在数列{an}中,已知a1=7/2,an=3a(n-1)+3^n-1(n≥2,n属于N*).
(1.)求证:{(an-1/2)/3^n}是等差数列.
(2.)求数列{an}的通项公式an及它的前n项和Sn.

在数列{an}中,已知a1=7/2,an=3a(n-1)+3^n-1(n≥2,n属于N*).(1.)求证:{(an-1/2)/3^n}是等差数列.(2.)求数列{an}的通项公式an及它的前n项和Sn.
证明:(1)∵an=3a[n-1]+3^n-1(n≥2,n属于N*).[n-1]为下标
∴(an-1/2)/3^n-(a[n-1]-1/2)/3^[n-1]=(3a[n-1]+3^n-1-1/2)/(3^n)-(a[n-1]-1/2)/(3^[n-1])
=1
∴数列{(an-1/2)/3^n}是以(a1-1/2)/3^1=1,d=1的等差数列
(2)∵an-1/2)/3^n=1+(n-1)*1
∴an=n*3^n+1/2 n∈N+
先设bn=n*3^n,cn=1/2,另设数列{bn}的前n项和为Tn
然后用错位相减法来求Tn
Tn=1*3+2*3²+3*3³+……+n*3^n ①
3Tn= 1*3²+2*3³+……+(n-1)*3^n+n*3^(n+1) ②
②-①得Tn=(3/2n-3/4)*3^n+3/4
则Sn=Tn+1/2n=(3/2n-3/4)*3^n+3/4+1/2n n∈N+