设矩阵满足A^3-A^2+3A-2E=0,则(E-A)^-1=?
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/30 05:01:23
x){n+_l6;:i;<~O=q6IEk/!.$UƮ`g
Ov/q5jbO{73E( Y@+Dj*# 6yv 3
设矩阵满足A^3-A^2+3A-2E=0,则(E-A)^-1=?
设矩阵满足A^3-A^2+3A-2E=0,则(E-A)^-1=?
设矩阵满足A^3-A^2+3A-2E=0,则(E-A)^-1=?
A^3-A^2+3A-3E=-E
所以,E=3(E-A)+(A^2-A^3)即:E=3(E-A)+A^2(E-A)=(E-A)(3E+A^2)所以,(E-A)^-1=3E+A^2
设4阶矩阵A满足|3E-A|,AAT=2E,|A|
设矩阵满足A^3-A^2+3A-2E=0,则(E-A)^-1=?
设矩阵满足方程A^2+3A-5E=0.求(A-E)的逆矩阵怎么求?
设A为3阶矩阵,E为3阶单位矩阵,且满足A²+A-2E=0,求(A-E)的逆
设4阶方阵A满足/A+3E/=0,AA^T=2E,矩阵/A/
设n阶矩阵A满足A^3-2E=0,则(A-E)^-1=?
设N阶矩阵A满足A^2-2A+3E=0 ,则秩A=N
设n阶矩阵A满足A^2-3A+2E=0,证明A可相似对角化.
设n阶逆矩阵A满足A^2-3A-6E=0 证明2E-A可逆并求其逆矩阵急
设矩阵A满足A^3-2A^2+A-E=0求证A可逆并且A^(-1)=(A-E)^2
设矩阵A满足A^2=E.证明:A+2E是可逆矩阵.
设矩阵A满足A的平方=E,证明A+2E是可逆矩阵
设3阶矩阵A满足3E+2A-A^2=0,r(E+A)+r(3E-A)=
设n阶实方阵A满足A^2-4A+3E=0,证明 B=(2E-A)^T(2E-A)是正定矩阵
设方阵A满足A²+3A-2E=0,证明方阵A+3E可逆,并求A+3E的逆矩阵.
设方阵A满足A的3次方-2A+3E=0,证明A+E可逆,并求(A+E)的逆矩阵
设方阵A满足A^2-6A+8E=0,且A转置=A,试证A-3E为正交矩阵
设矩阵A满足A^2-3A+2E=0,证明A+4E为可逆阵,并求其逆矩阵,设n为正整数,那么A+nE为可逆矩阵么?