求出f(x)=2sin(2x+π/6)的单调区间,最大值和最小值,对称轴,对称中心

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/20 01:49:15
求出f(x)=2sin(2x+π/6)的单调区间,最大值和最小值,对称轴,对称中心
xUN@~ p<7=Cc1[}tV8ݖR(F`7=A3

求出f(x)=2sin(2x+π/6)的单调区间,最大值和最小值,对称轴,对称中心
求出f(x)=2sin(2x+π/6)的单调区间,最大值和最小值,对称轴,对称中心

求出f(x)=2sin(2x+π/6)的单调区间,最大值和最小值,对称轴,对称中心
f(x)=2sin(2x+π/6)
单调区间增:2kπ-π/2

令2kπ-π/2≦2x+π/6≦2kπ+π/2
得,kπ-π/3≦x≦kπ+π/6
即f(x)的单调增区间为[kπ-π/3,kπ+π/6],k∈Z.
令2kπ+π/2≦2x+π/6≦2kπ+3π/2.
得,kπ+π/6≦x≦kπ+2π/3.
所以f(x)的单调减区间为[kπ+π/6,kπ+2π/3].
因为振幅是2,所以最大值为2,最小值为-2

全部展开

令2kπ-π/2≦2x+π/6≦2kπ+π/2
得,kπ-π/3≦x≦kπ+π/6
即f(x)的单调增区间为[kπ-π/3,kπ+π/6],k∈Z.
令2kπ+π/2≦2x+π/6≦2kπ+3π/2.
得,kπ+π/6≦x≦kπ+2π/3.
所以f(x)的单调减区间为[kπ+π/6,kπ+2π/3].
因为振幅是2,所以最大值为2,最小值为-2
令2x+π/6=kπ+π/2,得x=1/2kπ+π/6
所以对称轴为x=1/2kπ+π/6.
令2x+π/6=kπ,得x=1/2kπ-π/12.
所以对称中心为(1/2kπ-π/12,0)
但愿对你有帮助!

收起

令2kπ-π/2≦2x+π/6≦2kπ+π/2
解得kπ-π/3≦x≦kπ+π/6
即f(x)的单调增区间为[kπ-π/3,kπ+π/6],k∈Z.
令2kπ+π/2≦2x+π/6≦2kπ+3π/2.
解得kπ+π/6≦x≦kπ+2π/3.
所以f(x)的单调减区间为[kπ+π/6,kπ+2π/3].k∈Z.
当2x+π/6=π/2+2kπ即x=π/...

全部展开

令2kπ-π/2≦2x+π/6≦2kπ+π/2
解得kπ-π/3≦x≦kπ+π/6
即f(x)的单调增区间为[kπ-π/3,kπ+π/6],k∈Z.
令2kπ+π/2≦2x+π/6≦2kπ+3π/2.
解得kπ+π/6≦x≦kπ+2π/3.
所以f(x)的单调减区间为[kπ+π/6,kπ+2π/3].k∈Z.
当2x+π/6=π/2+2kπ即x=π/6+kπ时f(x)取得最大值,最大值为2,
当2x+π/6=-π/2+2kπ即x=-π/3+kπ时f(x)取得最小值,最小值为-2
令2x+π/6=kπ+π/2,得x=kπ/2+π/6
所以对称轴为x=kπ/2+π/6.
令2x+π/6=kπ,得x=kπ/2-π/12.
所以对称中心为(kπ/2-π/12,0)

收起