cos(x+y)-cosx如何等于-2sin[(2x+y)/2]sin(y/2),

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/18 17:47:47
cos(x+y)-cosx如何等于-2sin[(2x+y)/2]sin(y/2),
x)K/֨Ю2*.kzwOvgEk$bJ}#M"}2tِkP& W 0]e $Qu"A4Ƃu(EqU$XÃ6yvsP T aBϺd'?ٵٴWt|ʊzx}=/Ozںfum}l}uA4,@AuP@`b?}OW& c X _CQ 'M[u/<Նp

cos(x+y)-cosx如何等于-2sin[(2x+y)/2]sin(y/2),
cos(x+y)-cosx如何等于-2sin[(2x+y)/2]sin(y/2),

cos(x+y)-cosx如何等于-2sin[(2x+y)/2]sin(y/2),
x+y=(2x+y)/2+(y/2) x=(2x+y)/2-(y/2)
cos(x+y)-cosx=cos[(2x+y)/2+(y/2)]-cos[(2x+y)/2-(y/2)]
=cos[(2x+y)/2]*cos(y/2)-sin[(2x+y)/2]*sin(y/2)-cos[(2x+y)/2]*cos(y/2)-sin[(2x+y)/2]*sin(y/2)
=-2sin[(2x+y)/2]sin(y/2)

x+y=(2x+y)/2+y/2
x=(2x+y)/2-y/2
把他们代人方程,用和(差)角公式即可

设A=M+N,B=M-N,
cosA-cosB=cos(M+N)-cos(M-N)
=cosMcosN-sinMsinN-(cosMcosN+cosMcosN)
=-2sinMsinN
=-2sin((A+B)/2)sin((A-B)/2)
代公式就行了