如何理解高阶无穷小量?

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/18 06:40:27
如何理解高阶无穷小量?
xT[rX PɞI*PLr%PL0`1!c+[1DN*)]P ܲ=8[TC,j,Oۢ.M`)vw[+P>Oeŧu-O :8Qgmh»0y5L8EU(Fdt |}S@?:9a[xysdBHg vf%}u&ʈjNVKxQA~Xj\%-L4kK١\t3eBџ15 a9w"n<~C

如何理解高阶无穷小量?
如何理解高阶无穷小量?

如何理解高阶无穷小量?
0.教科书对无穷小量的定义难以理解的原因是,他们把无穷小量看成是在一维里有值的数,这和现有的逻辑有矛盾,因为论多么小的数,经无限次相加必须结果会是一个无限大的数.而且把对这种定义的检验建立在无限次的操作上,这种操作是不可能完全实现的.
1.应该把无穷小量理解为“较低维的数”.所谓的低维,举个例子,比如一个边长为8的正方形,它的面积为64,这里的边长8就是相对于面积64来说是较低维的数,它有值,是8;但它的值在面积上看来是为0的.也就是说边长相对于面积来说是没有值的,但它自身有值.
2.这样就可以把无穷小量定义为:点值为变量,线值为0的量.这种定义是很明确清晰的,没有教科书定义的那种模糊不清的问题.
3.由上面清晰的定义,无穷小量的运算也变得清晰明确,点值变量的舍弃也很好理解.

无穷小量是指自变量有某种趋向时 以0为极限的一类函数 至于高阶还是低阶自然是通过与其他无穷小量比较得到的 是高是低完全是相对的 比较的是函数值趋向于0的速度 要说理解 大概可以认为当自变量的某种趋向程度很大时, 较高阶的无穷小量相对于较低阶
的更接近0 绝对值更小...

全部展开

无穷小量是指自变量有某种趋向时 以0为极限的一类函数 至于高阶还是低阶自然是通过与其他无穷小量比较得到的 是高是低完全是相对的 比较的是函数值趋向于0的速度 要说理解 大概可以认为当自变量的某种趋向程度很大时, 较高阶的无穷小量相对于较低阶
的更接近0 绝对值更小

收起