在Rt△ABC中,已知BC=a,若长为2a的线段PQ以点A为中点,问向量PQ与向量BC的夹角取何值时,向量BP*向量CQ的值最大?并求出这个最大值

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/15 06:50:23
在Rt△ABC中,已知BC=a,若长为2a的线段PQ以点A为中点,问向量PQ与向量BC的夹角取何值时,向量BP*向量CQ的值最大?并求出这个最大值
xRN@)δ5i[#ɴ+CT",pg|!!Xsz=3ʥyz0<~twۘ>Mݠ GQmໞg{p v@xt{R4w7F7jV+f"%l Wx5Ż/*/ywob䔽=\:Ntߚ0^ax1z{-=/{U)|a=:J⤄ud#ΨNF,Jrpzq10G7` 3w*}]Z jzLĜ|BA"qMbBu.b ~9ǛMeJ7#Db Dc.&DDwE&gFl%ͳ"MYj+ C,u

在Rt△ABC中,已知BC=a,若长为2a的线段PQ以点A为中点,问向量PQ与向量BC的夹角取何值时,向量BP*向量CQ的值最大?并求出这个最大值
在Rt△ABC中,已知BC=a,若长为2a的线段PQ以点A为中点,问向量PQ与向量BC的夹角取何值时,向量BP*向量CQ的值最大?并求出这个最大值

在Rt△ABC中,已知BC=a,若长为2a的线段PQ以点A为中点,问向量PQ与向量BC的夹角取何值时,向量BP*向量CQ的值最大?并求出这个最大值
(1)以AB为x轴,AC为y轴建立坐标系,且设A(0,0),B(b,0),C(0,c).(b^2+c^2=a^2).易知,点P,Q在以点A为圆心,a为半径的圆上,故可设P(acost,asint),Q(-acost,-asint).===>BP=(acost-b,asint),CQ=(-acost-c,-asint).===>BP*CQ=...=--a^2+a(csint-bcost)=-a^2+a^2*sin(t-k)=a^2*[sin(t-k)-1]≤0.===>(BP*CQ)max=0.(sink=b/a,cosk=c/a).易知,此时,PQ⊥BC.