1/(2!)+1/(3!)+1/(4!)+1/(5!) +…+1/(n!)

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/15 01:26:30
1/(2!)+1/(3!)+1/(4!)+1/(5!) +…+1/(n!)
xPJ@MF!ɧ?b AV@*ڴ!d/8fgΛ7nc[#*2 *R^c"ޙk_j\k5/귫ɼEUD,KרN}T~9g6gy'!]XlKFl06MNǀ}*a[tmxW!;RFҬ\$ Q#@Š08ѥ REQ

1/(2!)+1/(3!)+1/(4!)+1/(5!) +…+1/(n!)
1/(2!)+1/(3!)+1/(4!)+1/(5!) +…+1/(n!)

1/(2!)+1/(3!)+1/(4!)+1/(5!) +…+1/(n!)
放缩法
n>3时,n!=1*2*...*(n-1)*n>(n-1)n
所以原式

首先,注意到1/2+1/4+1/8+...=1
我们只要比较这两组和就可以,
对于第n项,(n>2)
(n+1)!=(n+1)n(n-1)..*2*1
2^n =2* 2*2*....*2
显然(n+1)!>2^n
所以1/(n+1)!<1/2^n
所以1/(2!)+1/(3!)+1/(4!)+1/(5!) +…+1/(n!)<1/2+1/4+1/8+...=1
所以1/(2!)+1/(3!)+1/(4!)+1/(5!) +…+1/(n!)<1

因为左边<1/2+1/4+1/8+...+1/2^n=1/2+(1/2-1/4)+(1/4-1/8)+...+(1/2^(n-1)/2^n)=1-1/2^n<1,得证