数分问题求证明Exercise 8.Suppose on a recent exam,Amy received an A,Joe received a D,Megreceived a B,and Sam received an A.Let R = { Amy,Joe,Meg,Sam }10 1.PREPARATORY MATERIALLet S = {A,B,C,D,F}Let T = {A,B,D}Let f = {(Amy,A),(Joe,D),(Meg,B),(

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/20 22:32:36
数分问题求证明Exercise 8.Suppose on a recent exam,Amy received an A,Joe received a D,Megreceived a B,and Sam received an A.Let R = { Amy,Joe,Meg,Sam }10 1.PREPARATORY MATERIALLet S = {A,B,C,D,F}Let T = {A,B,D}Let f = {(Amy,A),(Joe,D),(Meg,B),(
xT[OA+4i$H1,&m4m>q@"bP*xUڴ\D˓gvY/ 3|3c>p$lJ:QR*6`#.m1ˎMImzˎ"G4\`Nfm{3Ƹ/u~dEJBB(yz_Z_V A3zH M'z:E#ȶ0[`%fXxn-pF37Km4Ϯ7F3M*[ & w^^~'FYŻ.0Wnv~L1.M8'5,' .ށ|~ϺC"8Hc(kg㼂R{e //ljt܅ىJ`'V[l7C?pnC}R?by%8+e|WpnU,EOV %w Io_p(u-Li#--FЮIȻKVb CI:+%Vkp cZ,FTX }` P8PgR:y4iu xyf:Y,EpH-pYxb G uRRKI)XMOF*p猜<u/7p&!&$CMজ܃5}$+q64p"8 h u8xB$be5|"}".*1S&P,.Y(Qm&I:v]pz'',: 8(ml~+Z+tbQMod^7(iג4BYQ_u: k$HYSjUFMdJ-

数分问题求证明Exercise 8.Suppose on a recent exam,Amy received an A,Joe received a D,Megreceived a B,and Sam received an A.Let R = { Amy,Joe,Meg,Sam }10 1.PREPARATORY MATERIALLet S = {A,B,C,D,F}Let T = {A,B,D}Let f = {(Amy,A),(Joe,D),(Meg,B),(
数分问题求证明
Exercise 8.Suppose on a recent exam,Amy received an A,Joe received a D,Meg
received a B,and Sam received an A.
Let R = { Amy,Joe,Meg,Sam }10 1.PREPARATORY MATERIAL
Let S = {A,B,C,D,F}
Let T = {A,B,D}
Let f = {(Amy,A),(Joe,D),(Meg,B),(Sam,A)}
Let g = {(A,Amy),(D,Joe),(B,Meg),(A,Sam) }
Let h = {(A,Amy),(D,Joe),(B,Meg) }
Use the definition of a function to explain why the following statements are true:
• f is a function from R to T.
• f is not a function from T to R.
• f is a function from R to S.
• g is not a function from T to R.
• h is a function from T to R.
• h is not a function from S to R.

数分问题求证明Exercise 8.Suppose on a recent exam,Amy received an A,Joe received a D,Megreceived a B,and Sam received an A.Let R = { Amy,Joe,Meg,Sam }10 1.PREPARATORY MATERIALLet S = {A,B,C,D,F}Let T = {A,B,D}Let f = {(Amy,A),(Joe,D),(Meg,B),(
其实这道题主要是考查函数的定义:
设A,B是非空的数集,如果按照某种确定的对应关系f,使对于集合A中的任意一个数x,在集合B中都有唯一确定的数f(x)和它对应,那么就称fA→B为从集合A到集合B的一个函数,记作y=f(x),x∈A.
由上定义看出:
定义域内的所有元素都需要用上;
每个元素经过f的作用之后都只能得到唯一一个确定的元素;
值域可以存在元素使得没有定义域内的元素与之对应.

下面看:
• f is a function from R to T.(明显符合上面的定义)
• f is not a function from T to R.(因为同样的一个A对应了Amy和Sam)
• f is a function from R to S.(明显符合上面的定义)
• g is not a function from T to R.(因为同样的一个A对应了Amy和Sam)
• h is a function from T to R.(明显符合上面的定义)
• h is not a function from S to R.(因为定义域S内有元素没有被对应)


有不懂欢迎追问