讨论函数f(x)=2x^3-6x^2+mx的零点的个数

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/28 03:57:17
讨论函数f(x)=2x^3-6x^2+mx的零点的个数
x 0_ŖhAh(nKFA ""XJ*2uIIsr^,zdzt1{_Fi' N~ sKJe/k@*D;Y3uRCdY "\lPhB%d`xҾCEa6WOEq6!`Y/3Άb4E˳"jՆ'

讨论函数f(x)=2x^3-6x^2+mx的零点的个数
讨论函数f(x)=2x^3-6x^2+mx的零点的个数

讨论函数f(x)=2x^3-6x^2+mx的零点的个数
答:
f(x)=2x^3-6x^2+mx=(2x^2-6x+m)x
零点之一为x=0,f(x)=0
2x^2-6x+m=0
1)当x=0时,m=0,f(x)=2x^3-6x^2=2(x-3)x^2,m=0时,f(x)有2个零点
2(x-3/2)^2=9/2-m
2)当9/2-m>0时并且m≠0时,方程有2个不同的实数解,m