双曲线x²/4-y²/12=1的焦点到渐近线的距离为多少 要正确率

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/28 13:48:44
双曲线x²/4-y²/12=1的焦点到渐近线的距离为多少 要正确率
xQAO0+&&&]&N~ x7D/pJdubpD!Qnc&8}F9O3z¢iemom }*v1scG!|ҩR I;Jګ[}b tycyg[!=ϫb-=̬QeJa{YSڜpLʁdO;BwǜL",l&$:'+"@JWiMŖY|2!{h0 r7@՜,dO&] lbQ{,xNHP/Y]rȒ3aᑍ

双曲线x²/4-y²/12=1的焦点到渐近线的距离为多少 要正确率
双曲线x²/4-y²/12=1的焦点到渐近线的距离为多少 要正确率

双曲线x²/4-y²/12=1的焦点到渐近线的距离为多少 要正确率
∵x^2/4-y^2/12=1,∴a^2=4、b^2=12,∴c^2=a^2+b^2=16,∴c=4.
考虑到对称性,只需考虑一个焦点到一条渐近线的距离就可以了.
显然,双曲线的右焦点坐标为(4,0),一条渐近线方程是:x/2+y/(2√3)=0.
∴焦点到渐近线的距离=|4/2+0|/√(1/4+1/12)=2/[(1/2)√(1+1/3)]=4/√(4/3)=2√3.