如何证明两边上的中线相等的三角形是等腰三角形

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/28 19:21:49
如何证明两边上的中线相等的三角形是等腰三角形
xSN@JV$(*?:-Ae" !U)Î<:] O;;sΙq;mQ1ePœw荊syXf 3mq^Ciy=&Z+I6ncJ9aBcylYT TXOvGy9Tr·*nW s7z{=P' _|ǘ#"0-_

如何证明两边上的中线相等的三角形是等腰三角形
如何证明两边上的中线相等的三角形是等腰三角形

如何证明两边上的中线相等的三角形是等腰三角形
三角形ABC,BD、CE是三角形上的两条中线,BD交AC于D,CE交AB于E,BD等CE,那么三角形BCE的面积等三角形BCD的面积等于二分之一三角形ABC的面积.做三角形BCE的高EN交BC于N,做三角形BCD的高DM交BC于M.那么,EN等于DM等二分之一三角形ABC的面积除BC(三角形BCE的面积等于二分之一乘BC乘EN,三解形BCD的面积等二分之一乘BC乘DM,它们都等于三角形ABC面积的二分之一,即BC乘EN等于BC乘DM等于三角形ABC的面积)
BM平方等BD平方减DM平方,CN平方等于CE平方减EN平方.因为BD=CE,EN=DM,所以BM=CN.那么,BN=CM.
因为EN=DM,BN=CM,角BNE等于角CMD等90度,所以三角形BNE等于三角形CMD,则BE=CD,因为E、D分别是AB、AC的中点,所以AB=AC,即三角形ABC是等腰三角形.

利用全等三角形

缺条件

不一定吧,应该还缺少条件。