三角形ABC是等边三角形,d是三角形abc外一点,且∠BDA=∠ADC=60°,求BD+CD=AD
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/20 11:27:29
三角形ABC是等边三角形,d是三角形abc外一点,且∠BDA=∠ADC=60°,求BD+CD=AD
三角形ABC是等边三角形,d是三角形abc外一点,且∠BDA=∠ADC=60°,求BD+CD=AD
三角形ABC是等边三角形,d是三角形abc外一点,且∠BDA=∠ADC=60°,求BD+CD=AD
四边形的内角和是360º
因为,
证明:
延长BD到E点,使DE=DC,
∵∠BDC=120度,所以∠CDE=60°
∴△CDE是等边三角形
∴∠ECD=60度,CD=CE
∵∠BCE=∠ACD,又△ABC是等边三角形,AC=BC,
∴ACD≌△BCE
∴AD=BE=BD+DE=BD+DC
方法二:延长DB至E,使得DE=DA,连接AE
(第一步...
全部展开
证明:
延长BD到E点,使DE=DC,
∵∠BDC=120度,所以∠CDE=60°
∴△CDE是等边三角形
∴∠ECD=60度,CD=CE
∵∠BCE=∠ACD,又△ABC是等边三角形,AC=BC,
∴ACD≌△BCE
∴AD=BE=BD+DE=BD+DC
方法二:延长DB至E,使得DE=DA,连接AE
(第一步证明 △AED为等边三角形,这样就可以将所求证的问题转化,为下一步做准备)
由于∠EDA为60度,DE=DA,所以 △AED为等边三角形(由这个结果可以得出隐含条件AD=AE=DE)
(第二步证明 △AEB和 △ADC全等,这样就可以将CD“挪动”到BE处,和BD连接起来,从而达到求证结果)
因为AE=AD(第一步证明得出的隐含条件),AC=AB(题目中说 △ABC为等边三角形的隐含条件),∠EAB=∠DAC(因为∠EAB+∠BAD=∠BAD+∠DAC=60度),所以 △AEB与 △ADC全等(两边夹一角定理),所以CD=BE(最后证明结论)
所以AD=DE=BD+BE=BD+CD,即AD=BD+CD,证明完毕
收起
∵△ABC是等边△,即每边边长相等每个角为60°。∴
全部展开
∵△ABC是等边△,即每边边长相等每个角为60°。∴
CD=BD
所以,CD+BD=1/2AD+1/2AD=aD
收起
延长BD到E点,使DE=DC,
∵∠BDC=120度,所以∠CDE=60°
∴△CDE是等边三角形
∴∠ECD=60度,CD=CE
∵∠BCE=∠ACD,又△ABC是等边三角形,AC=BC,
∴ACD≌△BCE
∴AD=BE=BD+DE=BD+DC
方法二:延长DB至E,使得DE=DA,连接AE
(第一步证明 △AED为...
全部展开
延长BD到E点,使DE=DC,
∵∠BDC=120度,所以∠CDE=60°
∴△CDE是等边三角形
∴∠ECD=60度,CD=CE
∵∠BCE=∠ACD,又△ABC是等边三角形,AC=BC,
∴ACD≌△BCE
∴AD=BE=BD+DE=BD+DC
方法二:延长DB至E,使得DE=DA,连接AE
(第一步证明 △AED为等边三角形,这样就可以将所求证的问题转化,为下一步做准备)
由于∠EDA为60度,DE=DA,所以 △AED为等边三角形(由这个结果可以得出隐含条件AD=AE=DE)
(第二步证明 △AEB和 △ADC全等,这样就可以将CD“挪动”到BE处,和BD连接起来,从而达到求证结果)
因为AE=AD(第一步证明得出的隐含条件),AC=AB(题目中说 △ABC为等边三角形的隐含条件),∠EAB=∠DAC(因为∠EAB+∠BAD=∠BAD+∠DAC=60度),所以 △AEB与 △ADC全等(两边夹一角定理),所以CD=BE(最后证明结论)
所以AD=DE=BD+BE=BD+CD,即AD=BD+CD,证明完毕
收起