如图所示,已知直三棱柱ABC-A1B1C1中,AC=CB=AA1=2,∠ACB=90°,E为BB1的中点,D∈AB,∠A1DE=90°(1)求证:CD⊥平面ABB1A1(2)求二面角D-A1C-A的余弦值(注:题目中并没有讲D是AB中点)

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/24 05:36:57
如图所示,已知直三棱柱ABC-A1B1C1中,AC=CB=AA1=2,∠ACB=90°,E为BB1的中点,D∈AB,∠A1DE=90°(1)求证:CD⊥平面ABB1A1(2)求二面角D-A1C-A的余弦值(注:题目中并没有讲D是AB中点)
xTOVWR%*n\;q #]ۑiבֿ4֒5LC{*(`|D>I Oay_ع:^:^2ɲ=_s~~_ckkZ?1:e]jI~DeltEY "mh&$a R)WN$+1覯~lF_=m_o%9-ԮQY5ߧ>X]GQNJ x*t>Y_꘎e=ҾVyq87O><Ù~ڗ2Sy߄M~&d^ bKpZDBi-* iá_K5&L[SaIpb.Vyߗ9H%u\!0EHՀBDϧ4Kp3ˣCύC{O]!m;:6z3oCAƦ_J NJFbb$3v "J Ivnӈk"rWz{4 -k2nng@/Գ&终_إZZ3y LDa}" D)&bd-Y_1vyH qpRǜ~!%bD0EFu#J}pBӢcsg9\9RNTM+Ixcu/gqtK |4hUke0,凗y?AA `|90;Ry29[󄦐D&$ljo6.HB8CC:]Zѣ_^7XldװSXm5\nң} B,@tr8紴e ͟i.}w98?

如图所示,已知直三棱柱ABC-A1B1C1中,AC=CB=AA1=2,∠ACB=90°,E为BB1的中点,D∈AB,∠A1DE=90°(1)求证:CD⊥平面ABB1A1(2)求二面角D-A1C-A的余弦值(注:题目中并没有讲D是AB中点)
如图所示,已知直三棱柱ABC-A1B1C1中,AC=CB=AA1=2,∠ACB=90°,E为BB1的中点,D∈AB,∠A1DE=90°
(1)求证:CD⊥平面ABB1A1
(2)求二面角D-A1C-A的余弦值

(注:题目中并没有讲D是AB中点)

如图所示,已知直三棱柱ABC-A1B1C1中,AC=CB=AA1=2,∠ACB=90°,E为BB1的中点,D∈AB,∠A1DE=90°(1)求证:CD⊥平面ABB1A1(2)求二面角D-A1C-A的余弦值(注:题目中并没有讲D是AB中点)
(1)只要证明D是AB中点问题就解决了,因为中点的话CD垂直AB,CD又垂直AA1,得证.
下面证明AD=BD:假设AD=x,则BD=2√2-x,(由已知条件,ACB为等腰直角三角形,勾股定理得)
同理已知A1B1=AB=2√2,B1E=BE=1,用勾股定理列方程:
在直角三角形A1DE中,(A1D)^2=4+x^2,DE^2=(2√2-x)^2+1,A1E^2=8+1=9
(A1D)^2+(DE)^2=(A1E)^2,解方程得x=√2,
所以AD=BD=√2.
(2) 取A1C的中点P,得AP=√2,AP垂直A1C.
过A作A1D的垂线,垂足为H,可用面积法求得AH=2√2/√6=2√3/3
则AH垂直A1D,AH垂直CD(因为CD垂直平面ABA1B1),所以AH垂直面A1CD,所以AH垂直A1C
上面已得AP垂直A1C,AH垂直A1C,所以角APH就是所求角.
直角三角形APH中AP、AH已知,自己求角APH的余弦吧孩纸~...
(PS:太久没做高中的数学题了,挺怀念的,好好珍惜你的高中生活吧,少年啊!)

直三棱柱ABC——A1B1C!中,BC1垂直A1C,BC1垂直与AB1,求证AB1=A1C如果书写有困难,思路是什么 如图,直三棱柱ABC-a1b1c1 直三棱柱ABC-A1B1C1已知AB1垂直BC1CA1垂直BC1求证AB1=CA1 已知在直三棱柱ABC~A1B1C1,A1B⊥B1C,A1B⊥AC1证明AC=BC如果B1C⊥AC1证三棱柱是正三棱柱 直三棱柱是什么? 已知直三棱柱中ABC-A1B1C1,棱长为a求二面角C1-AB-C的正弦值. 如图所示,在三棱柱ABCA-A1B1C1中,侧棱与底面垂直,角ABC=90°,AB=BC=BB1=2,M三棱柱ABC-A1B1C1中,侧棱与底面垂直,角ABC=90度,AB=BC=BB1=2,M,N分别是A1C,AB的中点 求三棱锥M-A1B1C1的体积(我不知道面A1B1C的面积是 在线等直三棱柱ABC-A1B1C1中,已知AB=3,AC=2,CAB=60度,AA1=5,求直三棱柱的体积 如图所示,在直三棱柱ABC-A1B1C1中,AB=BB1,AC1垂直平面A1BD,D为AC的中点,求证B1求证B1C平行平面A1BD 如图所示,已知正三棱柱ABC-A1B1C1的面对角线A1B⊥B1C,求证;B1C⊥C1A 如图所示,已知正三棱柱ABC-A1B1C1的面对角线A1B⊥B1C ,求证B1C⊥C1A不要向量证明! 已知直三棱柱中在直三棱柱ABC—A1B1C1中,AB=BC=BB1,D为AC的中点,求证:在直三棱柱ABC—A1B1C1中,AB=BC=BB1,D为AC的中点,求证:1,面A1BD⊥面A1ACC1,2,若AC1⊥面A1BD,则B1C1⊥面ABB1A1. 直三棱柱的性质 如图,直三棱柱 如图所示,直三棱柱ABC-A1B1C1中,CA=CB,E、M分别是CC1、A1B1的中点. 如图所示,直三棱柱ABC-A1B1C1中,CA=CB, E、M分别是CC1、A1B1的中点.(1)求证:A1B⊥C1M(2)求证:C1M//平面AB1E. 急需立体几何帮助! 如图所示,在直三棱柱ABC-A1B1C1中,底面为直角三角形,∠ACB=90°如图所示,在直三棱柱ABC-A1B1C1中,底面为直角三角形,∠ACB=90°,AC=根号2 ,BC=CC1=1,P是BC1上一动点,则A1P+PC的 一个直三棱柱的表面展开图如图所示,其中,黄色和绿色的部分都是边长为1的正方形,这个直三棱柱的体积是多少 如图所示是一个直三棱柱的表面展开图,其中,黄色和绿色的部分都是边长等于一的正方形.问这个直三棱柱的体积是多少?(直三棱柱的体积=底面积×高)