已知sinX+cosY=2/3,求3sinX+sin²Y的最大值与最小值

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/19 08:53:28
已知sinX+cosY=2/3,求3sinX+sin²Y的最大值与最小值
xRN@0MSF/ՕQWnHk@CAjL0R)P_`gZDи&ә{9wcB0#]7/"]啵 ToAY`Fϡ}1X8?̨ފ% /#' 5桛8Xt ~T;$Yw3MOJCV`%&JLzxWnҤ) '~/3ܭ2K0D/9uPԁ":6I&FF:2xvȃ,M"!>ۊO

已知sinX+cosY=2/3,求3sinX+sin²Y的最大值与最小值
已知sinX+cosY=2/3,求3sinX+sin²Y的最大值与最小值

已知sinX+cosY=2/3,求3sinX+sin²Y的最大值与最小值
sinX+cosY=2/3
得:sinx=2/3-cosy
由-1≦sinx≦1得:-1/3≦cosy≦5/3
又-1≦cosy≦1
所以:-1/3≦cosy≦1
把sinx=2/3-cosy,sin²y=1-cos²y代入3sinx+sin²y得:
原式=-cos²y-3cosy+3
令cosy=t,t∈【-1/3,1】
原式=-t²-3t+3,t∈【-1/3,1】
开口向下,对称轴为t=-3/2的抛物线,在区间【-1/3,1】上是递减的
所以,t=-1/3时,有最大值35/9;
t=1时,有最小值-1
即3sinx+sin²y的最大值为35/9,最小值为-1

祝你开心!希望能帮到你,如果不懂,请追问,祝学习进步!O(∩_∩)O