已知x>0,证明:lnX

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/23 19:49:03
已知x>0,证明:lnX
x}J0cx)Mc  U)EorE&!:щ-zWT$8+_wChF6]o`EG?fɔ_I.!dF4syQQ*X6^c8m1Z p]7 C͓ÂߋD^=3Bs <بD&"W_Y b1@UT:Wf QVaJ[+"MVVbGh =OVEĤ^Uk*AQqe*rVX{v?:a

已知x>0,证明:lnX
已知x>0,证明:lnX

已知x>0,证明:lnX
证明:【1】当0<x<1时,易知,一方面,lnx<ln1=0.即lnx≤0.而此时1<e^xe.∴当0<x<1时,有lnx<e^x.【2】当x≥1时,构造函数f(x)=(e^x)-lnx.(x≥1).求导得f'(x)=(e^x)-(1/x).易知此时有e^x≥e>1≥1/x.===>f'(x)=(e^x)-(1/x)>0.===>在[1,+∞)上,函数f(x)递增,∴当x≥1时,f(x)≥f(1)=e>0.即当x≥1时,有e^x>lnx.综上可知,当x>0时,有lnx<e^x.