∫1/sin(3x)dx=?thx

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/24 16:50:43
∫1/sin(3x)dx=?thx
x){ԱP83OøB3־$&H~ :B@1HFY^PX (%:9$m d#*<ٽ*c9B_a[ѥ 3ɫ0.Kkh;+<7O[U c(?Ɏgk>|]N]h=lH~qAb4md c MJ M$#/

∫1/sin(3x)dx=?thx
∫1/sin(3x)dx=?thx

∫1/sin(3x)dx=?thx
∫1/sin(3x)dx
=∫sin(3x)/sin²(3x)dx
=-1/3*∫d[cos(3x)]/[1-cos²(3x)] 令t=cos(3x)则有:
=-1/3*∫dt/(1-t²)
=-1/6*ln|(1+t)/(1-t)|+C 将t=cos(3x)代入有:
=-1/6*ln|(1+cos(3x))/(1-cos(3x))| 进一步化简
=-1/6*ln|(1+cos(3x))²/sin²(3x)|+C
=-1/3*ln|(1+cos(3x))/sin(3x)|+C

1/3*ln(csc(3*x)-cot(3*x))