求详细的幂函数图像的各种情况的分类讨论.比如当α为奇数时函数怎么样,α为偶数时函数怎么样?(貌似是奇数时原点对称,偶数时y轴对称吧?)α为负整数时?α为负分数时?α为正整数正分数?等

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/15 15:56:53
求详细的幂函数图像的各种情况的分类讨论.比如当α为奇数时函数怎么样,α为偶数时函数怎么样?(貌似是奇数时原点对称,偶数时y轴对称吧?)α为负整数时?α为负分数时?α为正整数正分数?等
xVR"IfوZ5#j13:b%ȣV|6Q=6UTfU9JTz6C{O{7s-.zqӴ}Ňq6ALmn>ȭ+"}?sۣ2|`5KzQ( fuks>1k31NĨ"4Ϝk풭}G/k(ݓBp1uyHj8m^o{Vs_A+2amw',s_-y0PT=Bn񄾺#N4g7*8I`W|L(Se/xۯVg֫žiyzt2P&qUh y"?l>+J:(u'i :pwxte'&&p8v I8]m8/T2ص-q(C6}DYCÄZzRC-&@,㔧r Dx\[ So lkPChY-y1}Lk>;!yeN (zq<~- &B GVk(ʣ {ԔrFR7hmtYe#nU2؛%/\Ԇ<Ї!9>LV2mZCWin:LmyTH(BBsc%-.{v1D{j~bBYA^:wHƠs? h[ bT@Ab4ʖ8 2$FP9jGg! sKb4S^I^u1zeY1|N]+'b(^l=Dl)›;ovœD) tHTJcVnC)sz$c Uoa%2h,^ mJ 6Nơ3~/ע/nP0F*Ӆ B

求详细的幂函数图像的各种情况的分类讨论.比如当α为奇数时函数怎么样,α为偶数时函数怎么样?(貌似是奇数时原点对称,偶数时y轴对称吧?)α为负整数时?α为负分数时?α为正整数正分数?等
求详细的幂函数图像的各种情况的分类讨论.
比如当α为奇数时函数怎么样,α为偶数时函数怎么样?(貌似是奇数时原点对称,偶数时y轴对称吧?)α为负整数时?α为负分数时?α为正整数正分数?等等,反正就是分类讨论详细的啊!马上全区统考了啊,伤不起,
例:
α>1时,若为偶数,则为一抛物线,在第一二象限.若为奇数,则为原点对称,在一三象限.且α值越大越靠近y轴.(我也不记得具体性质了,如果这个例错了,麻烦大神改正与添加.)
0<α<1时,…………
-1<α<0时,…………
α<-1时,…………
最好答出在哪个象限,图像大概是什么(如:抛物线,双曲线……).怎么对称.还是那句话,越详细越好,但是要在高一生的认知范围内 = =,不然不懂啊.
知道要求有点高,所以答得好我还会再加分的.

求详细的幂函数图像的各种情况的分类讨论.比如当α为奇数时函数怎么样,α为偶数时函数怎么样?(貌似是奇数时原点对称,偶数时y轴对称吧?)α为负整数时?α为负分数时?α为正整数正分数?等
特性
对于a的取值为非零有理数,有必要分成几种情况来讨论各自的特性:首先我们知道如果a=p/q,且p/q为既约分数(即p、q互质),q和p都是整数,则x^(p/q)=q次根号(x的p次方),如果q是奇数,函数的定义域是R,如果q是偶数,函数的定义域是[0,+∞).当指数a是负整数时,设a=-k,则y=1/(x^k),显然x≠0,函数的定义域是(-∞,0)∪(0,+∞).因此可以看到x所受到的限制来源于两点,一是有可能作为分母而不能是0,一是有可能在偶数次的根号下而不能为负数,那么我们就可以知道:排除了为0与负数两种可能,即对于x>0,则a可以是任意[实数; 排除了为0这种可能,即对于x0的所有实数,q不[能是偶数; 排除了为负数这种可能,即对于x为大于或等于0的所有实数,a就不能是负数.
编辑本段定义域
总结起来,就可以得到当a为不同的数值时,幂函数的定义域的不同情况如下:如果a为任意实数,则函数的定义域为大于0的所有实数; 如果a为负数,则x肯定不能为0,不过这时函数的定义域还必须根[据q的奇偶性来确定,即如果同时q为偶数,则x不能小于0,这时函数的定义域为大于0的所有实数;如果同时q为奇数,则函数的定义域为不等于0 的所有实数.在x大于0时,函数的值域总是大于0的实数.在x小于0时,则只有同时q为奇数,函数的值域为非零的实数.而只有a为正数,0才进入函数的值域.由于x大于0是对a的任意取值都有意义的,因此下面给出幂函数在第一象限的各自情况.
编辑本段第一象限
可以看到:(1)所有的图形都通过(1,1)这点.(a≠0) a>0时 图象过点(0,0)和(1,1) (2)当a大于0时,幂函数为单调递增的,而a小于0时,幂函数为单调递减函数.(3)当a大于1时,幂函数图形下凸;当a小于1大于0时,幂函数图形上凸.(4)当a小于0时,a越小,图形倾斜程度越大.(5)显然幂函数无界限.(6)a=0,该函数为偶函数 {x|x≠0}.
编辑本段图象