已知a>1且a^(lgb)=4次根号下2,求log2(ab)的最小值

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/25 01:34:50
已知a>1且a^(lgb)=4次根号下2,求log2(ab)的最小值
x){}K 옒iklg v>dGγM9FIg

已知a>1且a^(lgb)=4次根号下2,求log2(ab)的最小值
已知a>1且a^(lgb)=4次根号下2,求log2(ab)的最小值

已知a>1且a^(lgb)=4次根号下2,求log2(ab)的最小值
a^(lgb)=2^(lgblog2(a))=2^(1/4) lgblog2(a)=log2(b)log2(a)/log2(10)=1/4 log2(a)log2(b)=log2(10)/4
log2(ab)=log2(a)+log2(b)>=2√[log2(a)log2(b)]=2*(1/2)*√log2(10)=√log2(10)
最小值√log2(10)

已知a>1且a^(lgb)=4次根号下2,求log2(ab)的最小值 已知a>1且a^(lgb)=4次根号下2,求log2(ab)的最小值a^(lgb)=2^1/4,两边取以2为底的对数得:log2(a^(lgb))=log2(2^1/4),即lgblog2(a)=1/4,所以lgb=1/4log2(a),而log2(ab)=log2(a)+log2(b)=log2(a)+lgb/lg2,所以log2(ab)=log2(a)+1/4log2(a)lg2, 已知a>b>1,P=根号下lgq*lgb,Q=1/2^(lga+lgb),R=lg(a+b/2)比较P,Q,R的大小 已知ab=100,a>1,b>1求根号下1+lga+跟号下1+lgb的最大值 对数函数大小比较 “题目求详细解” 已知a>b>1,P=根号(lga*lgb),Q=1/2(lga+lgb),比较大小.求详细过程. 已知a>1 a的lgb次方=100 求lg(ab)的最小值?lg(ab)=lga+lgb>=2sqrt(lga*lgb) 根据已知条件a^(lgb)=100,得答案中2sqrt(lga*lgb)是什么意思? 已知a>4,b>1,且lg(a+b)=lga+lgb,则lg(a-1)+lg(b-1)=? 已知a>4,b>1,且lg(a+b)=lga+lgb,则lg(a-1)+lg(b-1)=? ab=1000 ,根号下(1+lga)+根号下(1+lgb)的最大值,a>1,b>1 根号(lga+lgb),1/2(lga+lgb),lg(a+b/2),比较大小 已知lga+lgb=2lg(a-2b)(a>0b>0且a>2b)求lga-lgb除以lg2 已知a,b,x都为正数,且lg(bx)·lg(ax)+1=0,求b分之a的范围是多少lg(bx)lg(ax)+1=0,且a,b,x为正数则(lga+lgx)(lgb+lgx)+1=0 (lgx)^2+(lga+lgb)lgx+1+lgalgb=0 这个方程有解所以(lga+lgb)^2-4lgalgb-4≥0 (lga)^2+2lgalhb+(lgb)^2 已知根号下a+4+根号下a-1=5,则根号下6-2根号下a= 已知a>1.b>1.c>1,且lga+lgb=1.求证:logaC+logbC>4lgc 已知a>1,b>1,且ab=8,求lga*lgb的最大值. 若a>b>1.p=根号下lga*lgb,Q=1/2(lga+lgb),R=lg[(a+b)/2]则P,Q,R的大小关系 若a>b>1,P=根号下lgalab,Q=(lga+lgb)/2,R=lg(a+b)/2则下列结论正确的是 A .R 已知lga,lgb是方程x^2-4x+1=0的两个根,求(lgb/a)^2的值.