求一个线性代数题

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/15 11:08:55
求一个线性代数题
xT[OW++HF]ŎHVxs]6TZUZnhl0Ƥ`L(8^cz^:(QRi|37sN$h/ MEڱ zFfvFϦb:K~ Ljl<:K=*L%ffҔ$&̳ω,~J<he(LJDX%R(!8#&q{_/kc^Y7fs]al꨿Mu|FZo#E$Nχq` zC>=Rͽ2͝%n6Ujwoɚ5Xq(kNc񗺀z/NYd8U \*^8{,k1ONn:R}bh.jC:\|`ts8psύH[4.\!4A!c mu‹Wt`B^sڱ;8wt@QCCGnWp_H{HM(_Z

求一个线性代数题
求一个线性代数题

求一个线性代数题
由已知,得 A(1,0,-1)^T = -(1,0,-1)^T,A(1,0,1)^T = (1,0,1)^T
故 -1,1 是A的特征值.a1 = (1,0,-1)^T ,a2 = (1,0,1)^T 是分别属于特征值-1和1的特征向量.
由A是3阶矩阵,且 r(A) = 2,所以0是A的特征值.
设 a3=(x1,x2,x3)^T 是A的属于特征值0的特征向量.
由A是实对称矩阵,故a与属于特征值 1和-1的特征向量正交,即有
x1 - x3 = 0
x1 + x3 = 0
解得方程组的基础解系:a3 = (0,1,0)^T.
则a1,a2,a3两两正交,只需把它们单位化,a1,a2 需除以它们的长度根号2 得 b1,b2.b3=a3
令P=(b1,b2,b3),则有 P^(-1) A P = diag{-1,1,0}
所以有 A = P diag{-1,1,0}P^(-1)
具体计算你应该会 我就不做了

这个题貌似一道考研题目,
我简单说一下过程吧,你自己计算。从题目中的式子看,A乘以矩阵后得到的矩阵第一列与原来那一列相差一个负号,第二列不变,所以-1,1都是A的特征值。A的秩为2,所以另一个特征值为0,这样A的三个特征值就求出来了。然后进一步求特征向量。...

全部展开

这个题貌似一道考研题目,
我简单说一下过程吧,你自己计算。从题目中的式子看,A乘以矩阵后得到的矩阵第一列与原来那一列相差一个负号,第二列不变,所以-1,1都是A的特征值。A的秩为2,所以另一个特征值为0,这样A的三个特征值就求出来了。然后进一步求特征向量。

收起

用到一个关键的结论。
实对称阵不同特征值对应的特征相量必正交
详见参考资料