已知a,b,c>0,求证:2(a3+b3+c3)大于或等于a2b+ab2+b2c+bc2+a2c+ac2
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/28 01:07:26
xQN@.t_%G"H@ Q?)Օ;VwΜs
*~YJxzI>)լƗzT$B1PIR ʻ3+W`E_aq6ڣ㛬JX:jZ%-&-9NN$qaԹOgա
)Fi8r.SyL W{X؎=T@z̚ 28淤+l2*.%-dW&:ZqBGg)+(V~dV3(
已知a,b,c>0,求证:2(a3+b3+c3)大于或等于a2b+ab2+b2c+bc2+a2c+ac2
已知a,b,c>0,求证:2(a3+b3+c3)大于或等于a2b+ab2+b2c+bc2+a2c+ac2
已知a,b,c>0,求证:2(a3+b3+c3)大于或等于a2b+ab2+b2c+bc2+a2c+ac2
这个看着很麻烦 实际很简单 用前一个式子减去后面的
2(a3+b3+c3)-(a2b+ab2+b2c+bc2+a2c+ac2)
=a3-a2b+b3-ab2+b3-b2c+c3-bc2+a3-a2c+c3-ac2
=a2(a-b)+b2(b-a)+b2(b-c)+c2(c-b)+a2(a-c)+c2(c-a)
合并得:
=(a-b)(a2-b2)+(b-c)(b2-c2)+(a-c)(a2-c2)
=(a-b)2 (a+b)+(b-c)2 (b+c)+(a-c)2 (a+c)
由a,b,c都大于零得整个式子大于零 当a=b=c时 式子相等
已知:a>0,b>0,c>0,求证:a3+b3+c3>=3abc
已知a+b+c=0 求证a3+a2c+b2c-abc+b3=0
已知a+b+c=0求证:a3+b3=-a2c-b2c+abc
已知 a+ b+ c=0 ,求证a3+ b3+ c3=3abc
已知a,b,c>0,求证:2(a3+b3+c3)大于或等于a2b+ab2+b2c+bc2+a2c+ac2
已知,a,b,c>0,求证:a3+b3+c3≥1/3(a2+b2+c2)(a+b+c)
已知a,b,c∈R+,求证:(a+b+c)(a3+b3+c3)≥(a2+b2+c2)2
已知a、b>0求证(a3+b3)1/3>(a2+b2)1/2
已知a+b+c=0求证a3+a2c+b2c-abc+b3=0谢谢帮忙啊
已知a3+b3+c3=a2+b2+c2=a+b+c=1.求证abc=0
已知a+b+c+d=0,求证a3+b3+c3+d3=3(abc+bcd+cda+dab)
已知a+b+c=1求证 a3+b3+c3>=1/3(a2+b2+c2)
已知a.b.c是整数,求证:a3+b3+c3>=3abc
已知1/a+1/b+1/c=1/(a+b+c),求证1/a3+1/b3+1/c3=1/(a3+b3+c3)神人们
已知a+b+c=0,求证1/2(a2+b2+c2).1/3(a3+b3+c3)=1/5(a5+b5+c5)
1.设a,b,c是三角形的三边,求证:a(b2+c2)+b(a2+c2)+c(a2+b2)-a3-b3-c3>2abc (a2是a的平方,a3是a的立方)2.已知0
已知:a3>b3且ab〉0,求证:1/a
已知实数a,b≥0,求证:a3+b3≥√ab(a2+b2)