∫(0,1) dx∫(x,X^2)dy 中的(X,X^2)Z怎么变极坐标啊?
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/29 12:01:25
xJ@_%
-fI%}AnUnꩂ`)^)({CmWp[x-:0i}2x*SDo*mT4{5_N_4=7w@Z!P3kww.X
qٱJ㤛h3%0iX nRhÇhl
∫(0,1) dx∫(x,X^2)dy 中的(X,X^2)Z怎么变极坐标啊?
∫(0,1) dx∫(x,X^2)dy 中的(X,X^2)Z怎么变极坐标啊?
∫(0,1) dx∫(x,X^2)dy 中的(X,X^2)Z怎么变极坐标啊?
化为极坐标:
0《θ《π/4 0《r《(√sinθ)/cosθ
交换积分次序∫(1,0)dx∫(x,0)f(x,y)dy+∫(2,1)dx∫(2-x,0)f(x,y)dy
积分∫(0,1)dx∫(0,根号x)dy
∫(2,0) (x+y)dx+(x–y)dy怎么算 (1,0)
y= ∫[0,x](t-1)^3(t-2)dt,dy/dx(x=0)
交换积分次序∫(0,1)dy∫(0,y)f(x,y)dx+∫(1,2)dy∫(0,2-y)dxf(x,y)dx
交换积分次序∫(1,2)dx∫(x,x^2)f(x,y)dy+∫(2,4)dx∫(x,4)dxf(x,y)dy
∫[0,1] dx∫[-x^2,1] f(x,y)dy+∫[1,e] dx∫[lnx,1] f(x,y)dy交换积分次序∫[0,1] dy∫[0,1] f(x,y)dx=∫[0,1] x| [0,1]dy= ∫[0,1] dy=∫y| [0,1]=1?
∫[0,1] dx∫[-x^2,1] f(x,y)dy+∫[1,e] dx∫[lnx,1] f(x,y)dy交换积分次序∫[0,1] dy∫[0,1] f(x,y)dx=∫[0,1] x| [0,1]dy= ∫[0,1] dy=∫y| [0,1]=1?
∫(0,1) dx∫(x,X^2)dy 中的(X,X^2)Z怎么变极坐标啊?
交换积分次序 ∫(4,0)dx∫(x,2x^0.5)f(x,y)dy
更换积分次序∫(0,2)dx∫(x,3x)f(x,y)dy
计算二重积分:∫[0,1]dx∫[0,x^½]e^(-y²/2)dy
计算积分 ∫(上限1,下限0)dx∫(上限1,下限x)siny^2dy
计算积分∫(1,0)dx∫(1,x)e^—y^2dy
变换积分次序∫(0,1)dy∫(-y,1+y^2)f(x,y)dx
交换积分次序:∫(0,1/2)dx∫(x,1-x)f(x,y)dy=
∫(上1下0)dx∫(上x下x^2)f(x,y)dy=?
∫dx∫f(x,y)dy 0