第一题的第二个“ = ”改为“ + ”
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/06 02:22:15
第一题的第二个“ = ”改为“ + ”
第一题的第二个“ = ”改为“ + ”
第一题的第二个“ = ”改为“ + ”
1、由第1、3项得B=x+3
第二项通分得A(x+2)=x+3 得 A=(x+3)/(x+2)
2、依题得(a+b)/ab=1/a+1/b=3,(b+c)/bc=1/b+1/c=4,(a+c)/ac=1/a+1/c=5
所以1/a+1/b+1/c=4
又1/a+1/b+1/c=bc/abc+ac/abc+ab/abc=(bc+ac+ab)/abc=4
所以 abc/(ab+bc+ac)=1/4
懂了的话别忘了采纳哦
第一题:你确定没抄错吗?
第二题:把三个条件的等式两边分别取倒数,如第一个:1/a+1/b=3,然后联立三个式子求出a b c的值,代入所求
我觉得题目应该是:最右边那个等号改成+号 两边同乘(x-2)^2,令x=2,有:5=A(2-2)+B,∴B=5,再令x=0,有:3=A(0-2)+B=-2A+5,∴A=1 (a+b)/(ab)=1/b+1/a=3;同理1/b+1/c=4、1/a+1/c=5 原式^-1(即原式的倒数)=1/c+1/a+1/b=1/2 * [...
全部展开
我觉得题目应该是:最右边那个等号改成+号 两边同乘(x-2)^2,令x=2,有:5=A(2-2)+B,∴B=5,再令x=0,有:3=A(0-2)+B=-2A+5,∴A=1 (a+b)/(ab)=1/b+1/a=3;同理1/b+1/c=4、1/a+1/c=5 原式^-1(即原式的倒数)=1/c+1/a+1/b=1/2 * [(1/b+1/a)+(1/b+1/c)+(1/a+1/c)]=1/2 * (3+4+5)=6 ∴原式=1/6
收起