常微分方程xy'=y*lny满足y(1)=e的解是变量分离后两边积分得到 积分1/y*lny 积分1/xdx .即ln(lny)=lnx+C 后面怎么得到y=e^Cx

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/27 01:17:32
常微分方程xy'=y*lny满足y(1)=e的解是变量分离后两边积分得到 积分1/y*lny 积分1/xdx .即ln(lny)=lnx+C 后面怎么得到y=e^Cx
x͐J@_eoI%! { KCibCP-BA*dw&͋xڙvmq,H}'r7?l[f|*k1> xZADT5m=b%5AG٩xz, uN./︪þcsK{战i54FI:GƷhu5]f3NjEOUˇ %g( P@Yϣ&-(zg

常微分方程xy'=y*lny满足y(1)=e的解是变量分离后两边积分得到 积分1/y*lny 积分1/xdx .即ln(lny)=lnx+C 后面怎么得到y=e^Cx
常微分方程xy'=y*lny满足y(1)=e的解是
变量分离后两边积分得到 积分1/y*lny 积分1/xdx .即ln(lny)=lnx+C 后面怎么得到y=e^Cx

常微分方程xy'=y*lny满足y(1)=e的解是变量分离后两边积分得到 积分1/y*lny 积分1/xdx .即ln(lny)=lnx+C 后面怎么得到y=e^Cx
答:
xy'=ylny
y'/y =(1/x)lny
(lny)' / lny =1/x
[ ln(lny) ] ' =1/x
两边积分得:
ln(lny) =lnx+lnC=ln(Cx)
lny=Cx
y=e^(Cx)
处理积分常数的实数采用lnC方便计算.