已知x2 +y2=12,xy=3,且0<x<y,求(x-y)/(x+y)的值.

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/30 05:26:26
已知x2 +y2=12,xy=3,且0<x<y,求(x-y)/(x+y)的值.
xSJ@$ddǧ$X]luӵ(J} ~L7ȣ]䞹{Y*/ٜ4xk O 1fw ; fz&Gb?><&;Փ,wW{ÓF oLG`b1LF9Ǟª844lh 5K=^ʼn hr"I֘Io>}诀1fGN6J`D(Q+D $bİҠb R9uKܸ]$ ׏2_]U,oF]_m[-NJ-4ueK | x09B~ʋBLufOm ;IkԠ dFU R~jwh8j)ĝu 65 h[b R; +f̵ɴN[HT+=JLM5+k

已知x2 +y2=12,xy=3,且0<x<y,求(x-y)/(x+y)的值.
已知x2 +y2=12,xy=3,且0<x<y,求(x-y)/(x+y)的值.

已知x2 +y2=12,xy=3,且0<x<y,求(x-y)/(x+y)的值.
(x-y)²=x²-2xy+y²=6
x所以x-y=-√6
(x+y)²=x²+2xy+y²=18
x>0,y>0y,所以x+y>0
所以x+y=√18
所以(x-y)/(x+y)=-√(6/18)=-√(1/3)=-√3/3

x^2+y^2+2xy=12+3*2=18
(x+y)^2=18
x^2+y^2-2xy=12-3*2=6
(x-y)^2=6
((x-y)/(x+y))^2=6/18=1/3
x-y<0,x+y>0
(x-y)/(x+y)<0
(x-y)/(x+y)=-1/3根号3


∵x^2+y^2=12,xy=3
∴(x+y)^2=x^2+y^2+2xy=12+6=18
(x-y)^2=x^2+y^2-2xy=12-6=6
∵0<x<y
∴x-y<0,x+y>0
故可以得出:
x+y=3√2
x-y=-√6
∴原式=-√6/(3√3)=-√3/3

x^2+y^2=12;
xy=3;
x^2+2xy+y^2=(x+y)^2=12+2*3=18;
x+y=3√2;
x^2-2xy+y^2=(x-y)^2=12-2*3=6;
x-y=-√6;
(x-y)/(x+y)=(-√6)/(3√2)=-√3/3

x2+y2+2xy-2xy=12
(x+y)2=12+2xy
(x+y)2=18
(x-y)2=12-2xy
(x-y)2=6
(x-y)2/(x+y)2=6/18
x-y/x+y=√3/3