An>0,A1=2,当n>=2,An+A(n-1)=n/(An-A(n-1))+2,求An通项

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/26 23:19:58
An>0,A1=2,当n>=2,An+A(n-1)=n/(An-A(n-1))+2,求An通项
xTj@~=Wܪ|3l06MA.)]7i7vҸRJAcAg]Oӣp aaQ {҆A^ĺsVJTWĺ(45m$h9%`:]jh9;o%(86 BۋnZؿO3

An>0,A1=2,当n>=2,An+A(n-1)=n/(An-A(n-1))+2,求An通项
An>0,A1=2,当n>=2,
An+A(n-1)=n/(An-A(n-1))+2,求An通项

An>0,A1=2,当n>=2,An+A(n-1)=n/(An-A(n-1))+2,求An通项
[An+A(n-1)][An-A(n-1)]=n+2[An-A(n-1)]
A²n-A²(n-1) =n+2[An-A(n-1)]
所以
A²2-A²1 =2+2(A2-A1)
A²3-A²2 =3+2(A3-A2)
...
A²n-A²(n-1) =n+2[An-A(n-1)]
左右2边全部相加得
A²n-A²1=(n-1)(n+2)/2 +2(An-A1)
A²n-4=(n-1)(n+2)/2+2An-4
A²n-2An+1=(n-1)(n+2)/2 +1 = (n²+n-2+2)/2
(An-1)²=n(n+1)/2
An= 1+根号[n(n+1)/2]

试试用数学归纳法

An>0,A1=2,当n>=2,An+A(n-1)=n/(An-A(n-1))+2
(An+A(n-1))(An-A(n-1))=n+2*(An-A(n-1))
A(N)^2-A(N-1)^2=N+2*(A(N)-A(N-1))
A(N)^2-2A(N)=A(N-1)^2-2A(N-1)+N (1)
设通项 A(N)^2-2A(N)+K*N^2是个等差数列,等差...

全部展开

An>0,A1=2,当n>=2,An+A(n-1)=n/(An-A(n-1))+2
(An+A(n-1))(An-A(n-1))=n+2*(An-A(n-1))
A(N)^2-A(N-1)^2=N+2*(A(N)-A(N-1))
A(N)^2-2A(N)=A(N-1)^2-2A(N-1)+N (1)
设通项 A(N)^2-2A(N)+K*N^2是个等差数列,等差数为D
则有A(N)^2-2A(N)+K*N^2=A(N-1)^2-2A(N-1)+K*(N-1)^2+D
有 A(N)^2-2A(N)=A(N-1)^2-2A(N-1)+K*(-2N+1)+D (2)
比较(1),(2),必有 -2K=1 K+D=0 ==>K=-1/2 D=1/2
所以通项 A(N)^2-2A(N)-(1/2)*N^2是个等差数列,等差数为1/2
n>=2,An+A(n-1)=n/(An-A(n-1))+2
当N=2时候 有A(2)^2-2A(2)-2=0
所以A(N)^2-2A(N)-(1/2)*N^2=A(2)^2-2A(2)-2+(1/2)*(N-2)
所以N>2,A(N)通项为A(N)^2-2A(N)-(1/2)*N^2=(1/2)*(N-2)
设A(N)=X
则有 X^2-2X+1=(1/2)(N^2+N)
(X-1)^2=√((N^2+N)/2)
所以X=1+√((N^2+N)/2)或者1-√((N^2+N)/2) 不合A(N)>0 舍去
所以A(N)=1+√((N^2+N)/2) 当N>=2

收起