∫x^2/(1-x^2)dx 求积分还有个 ∫1/(sin2xcosx)dx 求 积分

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/18 12:49:02
∫x^2/(1-x^2)dx 求积分还有个 ∫1/(sin2xcosx)dx 求 积分
x){Ա"H_PHiT(<|m/x6ɎU @5řyFPU e6IExLKk~ d 6u cS*F@9 Mm[YX4'є&*<[lzOwx6u=a@s'Ⱦ } # HLȺB $H*T U6Z ]$Uf,w>p B G6!%, v4B"k 2jD>@6\~qAb(UP z

∫x^2/(1-x^2)dx 求积分还有个 ∫1/(sin2xcosx)dx 求 积分
∫x^2/(1-x^2)dx 求积分
还有个 ∫1/(sin2xcosx)dx 求 积分

∫x^2/(1-x^2)dx 求积分还有个 ∫1/(sin2xcosx)dx 求 积分
∫x^2/(1-x^2)dx=∫[1/(1-x^2)-1]dx
=∫[(1/2)/(1+x)+(1/2)/(1-x)-1]dx
=(1/2)ln│(1+x)/(1-x)│-x+C (C是积分常数);
∫1/(sin2xcosx)dx=∫dx/(2sinxcos²x)
=(1/2)∫sinxdx/(sin²xcos²x)
=(-1/2)∫d(cosx)/[(1-cos²x)cos²x]
=(-1/2)∫[(1/2)/(1+cosx)+(1/2)/(1-cosx)+1/cos²x]d(cosx)
=(-1/2)[(1/2)ln│(1+cosx)/(1-cosx)│-1/cosx]+C (C是积分常数)
=(1/2)[ln│(1-cosx)/sinx│+1/cosx]+C.