已知函数f(x)=2cos(X)sin(X+π/3)-(根号3)(SINX)平方+sinXcosX已知4sinAsinB=3 4cosAcosB=1,求(1-co4A)(1-cos4B)的值.已知sinX+sinY=1/3,求u=sinX-sin^2Y的最大值和最小值
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/28 18:08:36
已知函数f(x)=2cos(X)sin(X+π/3)-(根号3)(SINX)平方+sinXcosX已知4sinAsinB=3 4cosAcosB=1,求(1-co4A)(1-cos4B)的值.已知sinX+sinY=1/3,求u=sinX-sin^2Y的最大值和最小值
已知函数f(x)=2cos(X)sin(X+π/3)-(根号3)(SINX)平方+sinXcosX
已知4sinAsinB=3 4cosAcosB=1,求(1-co4A)(1-cos4B)的值.
已知sinX+sinY=1/3,求u=sinX-sin^2Y的最大值和最小值
已知函数f(x)=2cos(X)sin(X+π/3)-(根号3)(SINX)平方+sinXcosX已知4sinAsinB=3 4cosAcosB=1,求(1-co4A)(1-cos4B)的值.已知sinX+sinY=1/3,求u=sinX-sin^2Y的最大值和最小值
f(x)=2cosx·sin(x+π/3)-√3sin²x+sinx·cosx
=2cosx·(sinx·cosπ/3+sinπ/3·cosx)-√3sin²x+sinx·cosx
=cosx·sinx+√3cos²x-√3sin²+sinx·cosx
=√3(cos²x-sin²x)+2·sinx·cosx
=√3cos2x-sin2x
=2sin(2x+π/3)
①最小正周期T=2π/2=π
②f(x)取得最大值时,2x+π/3=π/2+2kπ(k∈Z)
解得:x=kπ+(π/12)(k∈Z)
f(x)取得最小值时,2x+π/3=(3π/2)+2kπ(k∈Z)
解得:x=kπ+(7π/12)(k∈Z)
③由②可知,当k=0时,[π/12,7π/12]恰好是从最大值到最小值的半个周期
满足f(x)=1有且仅有一个这样的x,所以令2sin(2x+π/3)=1,解得:x=π/4
③如果不能理解,可以画一个f(x)==2sin(2x+π/3)在【π/12,7π/12】上的简图,结合图像就能求出来了!
∵4sinAsinB=3 , 4cosAcosB=1
∴sinAsinB=3/4, cosAcosB=1/4
又∵cos2x=1-2sin²x
∴1-cos2x=2sin²x
(1-cos4A)(1-cos4B)=2sin²2A·2sin²2B
=4(sin2A·sin2B)²
=4(2sinAcosA·2sinBcosB)²
=9/4
∵sinX+sinY=1/3
∴sinX=1/3-sinY
u=1/3-sinY-sin²Y
设sinY=t(-1≤t≤1)
则u=-t²-t+(1/3) (-1≤t≤1)
=-(t+1/2)²+(1/12) (-1≤t≤1)
画图,由图像可知:
u的最大值在t= -1/2处取得,Umax=1/12
u的最小值在t= 1处取得,Umin= -13/6
f(x)=2cosx(sinxcosπ/3+cosxsinπ/3)-(根号3)(sinx)²+sinxcosx
=sinxconsx+(根号3)[(cosx)²-(sinx)²]+sinxcosx
=sin2x+(根号3)cos2x=2sin(2x+π/3)
最小正周期为2π/2=π
2x+π/3=2kπ+π/2时f(x...
全部展开
f(x)=2cosx(sinxcosπ/3+cosxsinπ/3)-(根号3)(sinx)²+sinxcosx
=sinxconsx+(根号3)[(cosx)²-(sinx)²]+sinxcosx
=sin2x+(根号3)cos2x=2sin(2x+π/3)
最小正周期为2π/2=π
2x+π/3=2kπ+π/2时f(x)有最大值2,此时x=kπ+π/12
f(x)=1时,sin(2x+π/3)=1/2
2x+π/3=2kπ+π/6或2x+π/3=2kπ+5π/6
x属于【π/12,7π/12】,2x+π/3属于【π/2,3π/2】
只有5π/6在此范围内,因此2x+π/3=5π/6,x=π/4
收起
(x)=2cosx·sin(x+π/3)-√3sin²x+sinx·cosx
=2cosx·(sinx·cosπ/3+sinπ/3·cosx)-√3sin²x+sinx·cosx
=cosx·sinx+√3cos²x-√3sin²+sinx·cosx
=√3(cos²x-sin²x)+2·s...
全部展开
(x)=2cosx·sin(x+π/3)-√3sin²x+sinx·cosx
=2cosx·(sinx·cosπ/3+sinπ/3·cosx)-√3sin²x+sinx·cosx
=cosx·sinx+√3cos²x-√3sin²+sinx·cosx
=√3(cos²x-sin²x)+2·sinx·cosx
=√3cos2x-sin2x
=2sin(2x+π/3)
①最小正周期T=2π/2=π
②f(x)取得最大值时,2x+π/3=π/2+2kπ(k∈Z)
解得:x=kπ+(π/12)(k∈Z)
f(x)取得最小值时,2x+π/3=(3π/2)+2kπ(k∈Z)
解得:x=kπ+(7π/12)(k∈Z)
③由②可知,当k=0时,[π/12,7π/12]恰好是从最大值到最小值的半个周期
满足f(x)=1有且仅有一个这样的x,所以令2sin(2x+π/3)=1,解得:x=π/4
③如果不能理解,可以画一个f(x)==2sin(2x+π/3)在【π/12,7π/12】上的简了!
;l;
收起
令sinx=t,则siny=1/3-t
易知-1<=t<=1,-1<=1/3-t<=1
故-2/3<=t<=1
u=sinX-sin^2Y=t-(1/3-t)^2=-t^2+5t/3-1/9
=-(t-5/6)^2+1/36
因为对称轴x=5/6<1
所以函数在【-2/3,5/6】上单调递增,在【5、6,...
全部展开
令sinx=t,则siny=1/3-t
易知-1<=t<=1,-1<=1/3-t<=1
故-2/3<=t<=1
u=sinX-sin^2Y=t-(1/3-t)^2=-t^2+5t/3-1/9
=-(t-5/6)^2+1/36
因为对称轴x=5/6<1
所以函数在【-2/3,5/6】上单调递增,在【5、6,1】上单调递减
所以t=5/6时函数最大值为1/36;最小值在端点处取得,x=-2/3时u=-5/3;x=1时u=-25/9
所以最小值为-25/9,最大值为1/36
收起