求数列1*(1/3)+(1/3)*(1/5)+(1/5)*(1/7)+(1/7)*(1/9)+...+(1/99)*(1/101)的值

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/25 06:45:02
求数列1*(1/3)+(1/3)*(1/5)+(1/5)*(1/7)+(1/7)*(1/9)+...+(1/99)*(1/101)的值
x){ O;jikjI6ls0RS[OOķ j>aMR>M/+m5 uAfau!ziChCR,`j$فwb

求数列1*(1/3)+(1/3)*(1/5)+(1/5)*(1/7)+(1/7)*(1/9)+...+(1/99)*(1/101)的值
求数列1*(1/3)+(1/3)*(1/5)+(1/5)*(1/7)+(1/7)*(1/9)+...+(1/99)*(1/101)的值

求数列1*(1/3)+(1/3)*(1/5)+(1/5)*(1/7)+(1/7)*(1/9)+...+(1/99)*(1/101)的值
=(1-1/3)/2+(1/3-1/5)/2+(1/5-1/7)/2+.+(1/99-1/101)/2
=(1-1/3+1/3-1/5+1/5-1/7+.+1/99-1/101)/2
=(1-1/101)/2
=50/101