求和:1/1*3+1/2*4+1/3*5+.+1/n(n+1) 1/1*4+1/4*7+1/7*10+.+1/(n+2)(n+1)

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/29 06:01:45
求和:1/1*3+1/2*4+1/3*5+.+1/n(n+1) 1/1*4+1/4*7+1/7*10+.+1/(n+2)(n+1)
xQ;  %CCr KBdVh\VЉ]޾n~9N W` xzPkY`E,t(#E'#mwv,;ic$QgϊA.7F cyәhqTս~vBbi #W ԰8MPH("N o/j1͠OQ5C]O

求和:1/1*3+1/2*4+1/3*5+.+1/n(n+1) 1/1*4+1/4*7+1/7*10+.+1/(n+2)(n+1)
求和:1/1*3+1/2*4+1/3*5+.+1/n(n+1) 1/1*4+1/4*7+1/7*10+.+1/(n+2)(n+1)

求和:1/1*3+1/2*4+1/3*5+.+1/n(n+1) 1/1*4+1/4*7+1/7*10+.+1/(n+2)(n+1)
1:Sn=1/1*3+1/2*4+1/3*5+.+1/n*(n+2)
= 1/2*(1-1/3) + 1/2*(1/2 - 1/4) + ...+ 1/2*(1/n - 1/(n+2))
= 1/2 ( 1+ 1/2 - 1/(n+1) - 1/(n+2))
2:1/1*4+1/4*7+1/7*10+.+1/(3n-2)*(3n+1)
=(1/3)*[3/1*4+3/4*7+3/7*10+.+3/(3n-2)*(3n+1)]
=(1/3)*[(1/1-1/4)+(1/4-1/7)+(1/7-1/10)+...+(1/(3n-2)-1/(3n+1))]
=(1/3)*(1-1/(3n+1))
=n/(3n+1)