有一块扇形铁板,半径为R,圆心角为60度,从这个扇形中切割下一个内接矩形,即矩形的各个顶点都在扇形的半径或弧上,求这个内接矩形的最大面积

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/29 17:09:59
有一块扇形铁板,半径为R,圆心角为60度,从这个扇形中切割下一个内接矩形,即矩形的各个顶点都在扇形的半径或弧上,求这个内接矩形的最大面积
xU_oV*UN@Ml_[yEb(06m ,d%M 隴Ԭ)YRd:!DȾ)_a`}b?s{~NffCתxgh/w ?\{6*X~޿xk}C+Xǫ+wW'tdnÏv:X>ߨ kD4Opkkq\Ag44ۇ"q0SE~eNZfW$/}n"IW:wiZ}ti̠~Zg"q)RraY˥ƅ,v ~0%/EGR~yZz(Ei:,:C #監 zPp3vq-\ue61#8 wn~)W_|Fy1+M䗖J:/ťbyRo';)o qnXrU |HTD p (dq!ABl0˫ eNxY2O!uS2!>+ !ENTNV*TS(p@ P {rtQyZ8qd*4L1><5GFm>y%zk{8Gc哓d$DTGҰ,Ơy]@5Q1hl(

有一块扇形铁板,半径为R,圆心角为60度,从这个扇形中切割下一个内接矩形,即矩形的各个顶点都在扇形的半径或弧上,求这个内接矩形的最大面积
有一块扇形铁板,半径为R,圆心角为60度,从这个扇形中切割下一个内接矩形,即矩形的各个顶点都在扇形
的半径或弧上,求这个内接矩形的最大面积

有一块扇形铁板,半径为R,圆心角为60度,从这个扇形中切割下一个内接矩形,即矩形的各个顶点都在扇形的半径或弧上,求这个内接矩形的最大面积
如图,存在两种情况
①见左图
设∠BOC=α(0<α<60°)
那么,AD=BC=R*sinα;OB=R*cosα
而,OA/AD=cot60°=√3/3
所以,OA=(√3/3)AD=(√3/3)*R*sinα
则,AB=OB-OA=Rcosα-(√3/3)Rsinα
所以,S矩形ABCD=AB*BC=R*[cosα-(√3/3)sinα]*R*sinα
=R^2*[sinαcosα-(√3/3)sin^2 α]
=R^2*[(1/2)sin2α-(√3/3)*(1-cos2α)/2]
=R^2*[(1/2)sin2α+(√3/6)cosα-(√3/6)]
令f(α)=(1/2)sin2α+(√3/6)cosα=(√3/3)*[(√3/2)sin2α+(1/2)cos2α]
=(√3/3)sin[2α+(π/6)]
所以,当2α+(π/6)=π/2时,f(α)有最大值=√3/3
此时:α=π/6
所以,S有最大值=(√3/6)R^2

②见右图
设OA=2x(0<x<R/2)
由对称性知,OE⊥AD,OE⊥BC
△OAD为等边三角形
所以,AD=BC=2x
那么,CE=x
由勾股定理得:OE=√(R^2-x^2)
而,OF=√3x
所以,EF=OE-OF=√(R^2-x^2)-√3x
所以,S矩形ABCD=AB*BC=EF*BC=[√(R^2-x^2)-√3x]*2x
令x=Rsinθ(θ∈(0,π/6))
则,S矩形ABCD=(Rcosθ-√3Rsinθ)*2Rsinθ
=2R^2*(sinθcosθ-√3sin^2 θ)
=2R^2*[(1/2)sin2θ-(√3/2)(1-cos2θ)]
=2R^2*[sin(2θ+π/3)-(√3/2)]
则,当θ=π/12时,S矩形有最大值=(2-√3)R^2


对照两个结果可以发现,S矩形ABCD的最大值=(√3/6)R^2

有一块扇形铁板,半径为R,圆心角为60度,工人师傅需从扇形中割下一个内接矩形,求内接矩形的最大面积. 有一扇形铁板,半径为R,圆心角为60,工有一扇形铁板如图,半径为R,圆心角为60,工人师傅需要从扇形中切割一个 有一块扇形铁板,半径为R,圆心角为60°,工人师傅从扇形中切一个内接矩形,求矩形的最大面积.本人是个数学白痴,, 有一块扇形铁板,半径为R,圆心角为60度,从这个扇形中切割下一个内接矩形,即矩形的各个顶点都在扇形的半径或弧上,求这个内接矩形的最大面积 在半径为R,圆心角为60度的扇形铁板OBA中,工人师傅要截出一个面积最大的内接矩形,求矩形面积. 有一块扇形铁板,半径为R,圆心角为60°,从这个扇形中切割下一个内接矩形,即矩形的各个顶点都在扇形的半径或弧上,求这个内接矩形的最大面积. 扇形圆心角60度.半径为R,求扇形内切圆面积与扇形面积之比 一块半径是5厘米,圆心角为216度扇形薄铁板,用这块铁板围成一个圆锥捅,就它的容积. 有一块扇形铁板,半径为R,圆心角为60°,工人师傅从扇形中切一个内接矩形,求矩形的最大面积.看到好多人在问,想知道若该扇形为AOB,当这个矩形EFGH有两点E、F在圆弧AB上时,EF的距离是怎么算的, 扇形圆心角为60度,半径为r,则扇形内切圆面积与扇形面积之比为如题 在一块半径为R,圆心角为90度的扇形材料上,截得矩形的最大面积是多少? 在半径为R的扇形OAB中,圆心角AOB为60度,在扇形中有一个内接矩形,求矩形的最大面积? 有一块等边三角形的铁板,要在每个角上截去一块半径为4cm的扇形铁板,试求共截去多少平方厘米的铁板? 扇形铁板半径R,圆心角60°,截取最大面积矩形,怎样划线 在半径为R的扇形OAB中,圆心角AOB=60度,在扇形中有一个内接矩形,求内接矩形的最大面积 半径为R的扇形OAB中,圆心角AOB=60度,在扇形中有一个内接正方形,求内接正方形的面积 如扇形的圆心角为n度,扇形的半径为r,则扇形的弧长等于多少? 将一块圆心角为60度,半径为20厘米的扇形铁电截成一个矩形,求矩形的最大面积